Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
<u>Determine the force transmitted by the coupling between the nozzle and hose </u>
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
Answer:
Phase diagrams represent the relationship between temperature and the composition of phases present at equilibrium. An isomorphous system is one in which the solid has the same structure for all compositions. The phase diagram shown is the diagram for Cu-Ni, which is an isomorphous alloy system.
Hope it help you friend
Answer:
technician A is correct
Explanation:
Technician B has circuit topologies confused. In a series circuit, there is only one path for electrical current to take. In a parallel circuit, the current will divide between paths in proportion to the inverse of their resistance. The least resistance path will have the most current.
Technician A is mostly correct.
Answer: D) All of the above
Explanation:
Burn rate can be affected by all of the above reasons as, variation in chamber pressure because the pressure are dependence on the burn rate and temperature variation in initial gain can affect the rate of the chemical reactions and initial gain in the temperature increased the burning rate. As, gas flow velocity also influenced to increasing the burn rate as it flowing parallel to the surface burning. Burn rate is also known as erosive burning because of the variation in flow velocity and chamber pressure.