Answer:
M2 = 0.06404
P2 = 2.273
T2 = 5806.45°R
Explanation:
Given that p1 = 10atm, T1 = 1000R, M1 = 0.2.
Therefore from Steam Table, Po1 = (1.028)*(10) = 10.28 atm,
To1 = (1.008)*(1000) = 1008 ºR
R = 1716 ft-lb/slug-ºR cp= 6006 ft-lb/slug-ºR fuel-air ratio (by mass)
F/A =???? = FA slugf/slugaq = 4.5 x 108ft-lb/slugfx FA slugf/sluga = (4.5 x 108)FA ft-lb/sluga
For the air q = cp(To2– To1)
(Exit flow – inlet flow) – choked flow is assumed For M1= 0.2
Table A.3 of steam table gives P/P* = 2.273,
T/T* = 0.2066,
To/To* = 0.1736 To* = To2= To/0.1736 = 1008/0.1736 = 5806.45 ºR Gives q = cp(To* - To) = (6006 ft-lb/sluga-ºR)*(5806.45 – 1008)ºR = 28819500 ft-lb/slugaSetting equal to equation 1 above gives 28819500 ft-lb/sluga= FA*(4.5 x 108) ft-lb/slugaFA =
F/A = 0.06404 slugf/slugaor less to prevent choked flow at the exit
Answer:
The main difference between the bs2 and bs3 engine is to present in the catalytic converter. And in bs2 engines the catalytic converter is does not used for the formation of hc and co. In bs3 engine there is no harmful emissions in the hc and co
Answer:
The number of inputs processed by the new machine is 64
Solution:
As per the question:
The time complexity is given by:

where
n = number of inputs
T = Time taken by the machine for 'n' inputs
Also
The new machine is 65 times faster than the one currently in use.
Let us assume that the new machine takes the same time to solve k operations.
Then
T(k) = 64 T(n)


k = 64n
Thus the new machine will process 64 inputs in the time duration T
Answer: Describe the greatest power in design according to Aravena? The subject of Aravena’s recent Futuna Lecture Series in New Zealand was ‘the power of design,’ which he described as ultimately being “the power of synthesis” because, increasingly, architects are dealing with complex issues and problems.
What are the three problems with global urbanization? 1. Degraded Environmental Quality ...
2. Overcrowding ...
3. Housing Problems ...
4. Unemployment ...
5. Development of Slums...
How could you use synthesis in your life to solve problems? Hence, synthesis is often not a one-time process of solution design but is used in combination with problem understanding and solution analysis to progress towards a more complete understanding of problems and solutions over time (see Applying the Systems Approach topic for a more complete discussion of the dynamics of this aspect of the approach).
I got all three answers