1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
2 years ago
7

In a classroom, 4 out of every 6 students are female. If there are 27 students, how many of them are female?

Physics
1 answer:
icang [17]2 years ago
7 0

Answer:

16 male students, 11 female students

You might be interested in
Darwin was the first scientist to propose the concept of evolution.<br> A<br> True<br> B<br> False
vladimir2022 [97]

Answer:

B: False

Explanation:

In the early 19th century Jean-Baptiste Lamarck proposed the first fully formed theory of evolution. Darwin's theory would come a few decades later in 1858

6 0
3 years ago
Read 2 more answers
You do 120 j of work while pulling your sister back on a swing, whose chain is 5.10 m long. you start with the swing hanging ver
Goryan [66]
The work done to pull the sister back on the swing is equal to the increase in potential energy of the sister:
W= \Delta U = mg \Delta h (1)

where m is the sister's mass, g is the gravitational acceleration and \Delta h is the increase in altitude of the sister with respect to its initial position.

By calling \theta the angle of the chain with respect to the vertical, the increase in altitude is given by
\Delta h = L - L \cos \theta = L(1 - \cos \theta) (2)
where L is the length of the chain.

Putting (2) inside (1), we find
W= m g L (1 - \cos \theta)
from which we can find the mass of the sister:
m =  \frac{W}{g L (1 - \cos \theta)} =  \frac{120 J}{(9.81 m/s^2)(5.10 m)(1- \cos 32.0^{\circ})} =15.8 kg
5 0
3 years ago
When force is applied to a breaker bar the torque can be calculated by multiplying the length of the lever by the?
Nimfa-mama [501]

When a force applied to a breaker bar the torque can be calculated by multiplying the<u> length of the lever</u> by the tangential component of force on the lever.

<h3>What is torque?</h3>

Torque is the <u>rotating equivalent</u> of force in physics and mechanics. Depending on the subject of study, it is also known as the moment, moment of force, rotating force, or turning effect. It illustrates how a force can cause a change in the body's rotational motion.

Torque is given by the formula :

                          α = r x F ( bold letters represent vector quantities)

The S.I. unit for torque is :  N - m ( Newton - meter)

<h3>How do we define 1 N-m of torque?</h3>

The newton-metre is a torque unit (also known as a moment) in the SI system. The torque produced by a one newton force applied <u>perpendicularly to the end of a one metre long</u> moment arm is known as a newton-metre.

To learn more about torque:

brainly.com/question/14970645

#SPJ4

5 0
2 years ago
Which event is an example of condensation?
ale4655 [162]

Answer: D

If the fog disappears when the Sun comes out, then this is an example of condensation because:

the Sun actually dries up the fog, and it makes it into higher clouds.

Hope this helps you!

3 0
3 years ago
Keeping the mass at 1.0 kg and the velocity at 10.0 m/s, record the magnitude of centripetal acceleration for each given radius
Paha777 [63]

Answer:

The centripetal acceleration for the first radius; 2.0 m = 50 m/s²

The centripetal acceleration for the second radius; 4.0 m = 25 m/s²

The centripetal acceleration for the third radius; 6.0 m = 16.67 m/s²

The centripetal acceleration for the fourth radius; 8.0 m = 12.5 m/s²

The centripetal acceleration for the fifth radius; 10.0 m = 10 m/s²

Explanation:

Given;

mass of the object, m = 1 kg

velocity of the object, v = 10 m/s

different values of the radius, 2.0 m 4.0 m 6.0 m 8.0 m 10.0 m

The centripetal acceleration for the first radius; 2.0 m

a_c = \frac{v^2}{r} \\\\a_c_1= \frac{(10)^2}{2} \\\\a_c_1= 50 \ m/s^2

The centripetal acceleration for the second radius; 4.0 m

a_c_2= \frac{(10)^2}{4} \\\\a_c_2= 25 \ m/s^2

The centripetal acceleration for the third radius; 6.0 m

a_c_3= \frac{(10)^2}{6} \\\\a_c_3= 16.67 \ m/s^2

The centripetal acceleration for the fourth radius; 8.0 m

a_c_4= \frac{(10)^2}{8} \\\\a_c_4= 12.5 \ m/s^2

The centripetal acceleration for the fifth radius; 10.0 m

a_c_5= \frac{(10)^2}{10} \\\\a_c_5= 10 \ m/s^2

6 0
3 years ago
Other questions:
  • What is the maximum kinetic energy k0 of the photoelectrons when light of wavelength 350 nm falls on the same surface?
    12·1 answer
  • What If? Fluoride ions (which have the same charge as an electron) are initially moving with the same speed as the electrons fro
    14·1 answer
  • On an essentially frictionless, horizontal ice rink, a skater moving at 5.0 m/s encounters a rough patch that reduces her speed
    10·1 answer
  • A transformer's secondary coil has twice as many turns as its primary. If the primary is connected to 6 V of DC, how many volts
    15·1 answer
  • What is the mass number of the particle emitted from the nucleus during beta minus decay? What kind of charge does the particle
    10·1 answer
  • Gravitational Acceleration inside a Planet
    6·1 answer
  • This is a group of elements with few valence electrons that conducts heat and electricity.
    14·1 answer
  • The physiological need include:
    9·1 answer
  • Scott travels north 3 Km and then goes west 3 Km before coming straight
    11·1 answer
  • At which latitude would tropical rain forests be most likely?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!