It depends on what type of solid
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
<u>F₃ = 122.88 N</u>
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
<u>θ₃ = 20.63°</u>
Alkali Metals ......................................
Answer:
The answer is A
Explanation:
Here's an example. A child is in school taking a test. They have made a mistake on a question, and want to erase it. The eraser is made out of a type of rubber, the rubber has friction, which means the eraser has something that's going to resist movement. Now the child has exerted enough force to get it moving, and it's moving, it won't stop unless the child stops exerting force to keep it moving. Both Newton's 1st and 3rd law explain the action of moving something on a surface with friction.
Answer:
Positively charged particle trajectories always follow electric field lines because the electric force on a positively charged particle is in the same direction as the electric field.
Explanation:
For any positive charge the electric field emerges radially outwards and it goes radially inwards for the negative charges.
- From the theory of electric field lines we know that they never intersect each other, either they get merged when the sources are unlike or they repel when the sources are alike. In other words the electric field lines align in the same direction as that of the field.
- So, when a positive charge is released into the an electric field they follow the direction of the field lines because they too have their field lines emerging radially outwards and hence these lines align in the direction of the field.