We can use the ideal gas equation which is expressed as PV = nRT. At a constant volume and number of moles of the gas the ratio of T and P is equal to some constant. At another set of condition, the constant is still the same. Calculations are as follows:
T1/P1 = T2/P2
P2 = T2 x P1 / T1
P2 = 273 x 340 / 713
<span>P2 = 130 kPa</span>
Answer:
7.55 km/s
Explanation:
The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:

where
is the gravitational constant
is the mass of the telescope
is the mass of the Earth
is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)
v = ? is the orbital velocity of the Hubble telescope
Re-arranging the equation and substituting numbers, we find the orbital velocity:

D. convergent plate boundary involving an oceanic plate
G = 9.81 m/sec^2) g = 9.81

<span>Solving for velocity : </span>

<span> = 2gh </span>
<span>v = </span>

<span>v = (2 x 9.81 x 10)^1/2 </span>
<span>v = 196.2 m/sec (answer)</span>
The refractive index of water is

. This means that the speed of the light in the water is:

The relationship between frequency f and wavelength

of a wave is given by:

where v is the speed of the wave in the medium. The frequency of the light does not change when it moves from one medium to the other one, so we can compute the ratio between the wavelength of the light in water

to that in air

as

where v is the speed of light in water and c is the speed of light in air. Re-arranging this formula and by using

, we find

which is the wavelength of light in water.