Answer:
8.13secs
Explanation:
From the question weal are given
Height H =324m
Required
time it takes to drop t
Using the equation of motion
H = ut + 1/2gt²
Substitute the given values
324 = 0(t)+1/2(9.8)t²
324 = 1/2(9.8)t²
324 = 4.9t²
t² =324/4.9
t² = 66.12
t = √66.12
t = 8.13secs
Hence the time taken to drop is 8.13secs
Answer:
Acceleration, 
Explanation:
Initial speed of the skater, u = 8.4 m/s
Final speed of the skater, v = 6.5 m/s
It hits a 5.7 m wide patch of rough ice, s = 5.7 m
We need to find the acceleration on the rough ice. The third equation of motion gives the relationship between the speed and the distance covered. Mathematically, it is given by :




So, the acceleration on the rough ice
and negative sign shows deceleration.
Answer: b) pointed toward and parallel to the member.
Explanation:
It is shown in the picture attached
Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.
True. Think of a magnet and how they only connect to the opposite charges.