Answer:
Number of moles of methane form = 2.3 mol
Explanation:
Given data:
Number of moles of Hydrogen = 4.6 mol
Number of moles of methane form = ?
Solution:
Chemical equation:
C + 2H₂ → CH₄
Now we will compare the moles of methane with hydrogen from balance chemical equation.
H₂ : CH₄
2 : 1
4.6 : 1/2×4.6 = 2.3 mol
Form 3.6 moles of hydrogen 2.3 moles of methane can be formed.
B <span>Divide the chemical equation into two half-reaction equations, identifying which half-reaction is oxidation and which is reduction
</span>
Answer: E = 2.455 x 10^5 N/C
Explanation:
q1 = 1.2x10^-7C
q2 = 6.2x10^-8C
Electric field, E = kQ/r²
where k = 9.0x10^9
since the location is (27 - 5)cm from q1
hence electric field, E1 = k*q1/r²
E1= (9x10^9 x 1.2x10^-7)/(0.22)² = 22314.05 N/C
for q2:
E1 = k*q2/r²
E2 at 5cm
E2 = (9x10^9 x 6.2x10^-8)/(0.05)² = 223200 N/C
Hence, the total electric field at 5cm position is
E = E1 + E2
E = 22314.05 + 223200 = 245514.05 N/C
E = 2.455 x 10^5 N/C
Control variable mi amigo
Answer:
1) Increase temperature
2) Decrease temperature
3) Increase concentration of reactants
4) Increase pressure
5) Decrease pressure
Explanation:
Le Chatelier's Principle Fundamentals states that a chemical reaction at equilibrium that undergoes changes to pressure, temperature, or concentration, this will cause the equilibrium to shift in the opposite direction to offset the change.
1) Increase temperature
2) Decrease temperature
3) Increase concentration of reactants
4) Increase pressure
5) Decrease pressure