Conservation of mass. The mass that reacts must equal the mass of the products.
Answer:
2C3H8O + 9O2 ==> 6CO2 + 8H2O ... balanced equation
moles propanol = 5.26 g x 1 mol/60.1 g = 0.0875 moles
moles O2 = 31.8 g x 1 mol/31.9 g = 0.997 moles O2
Propanol is limiting based on the mol ratio in balance equation of 2 : 9
To find mass of O2 (excess reagent) left over, we will first find moles O2 used up.
moles O2 used = 0.0875 mol propanol x 9 mol O2/2 mol propanol = 0.394 moles O2 used
moles O2 left over = 0.997 mol - 0.394 mol = 0.603 mol O2 left
mass O2 left = 0.603 mol O2 x 32 g/mol = 19.3 g O2 left over
Answer : The correct option is, 
Explanation :
Amino acid : The acid that contains two functional groups that are carboxylic group,
and ammine group,
.
When the two or more that two amino acids join together with the help of peptide bond, they produces polypeptide chain or protein.
The bond present between the two amino acid is called a peptide bond.
The peptide bond is a chemical bond that is formed between the two molecules when the nitrogen of one amino acid react with the carbon of another amino acid by releasing a water molecule. This is a dehydration synthesis or condensation reaction.
From this we conclude that, only two functional groups carboxylic group,
and ammine group,
are present in all amino acids.
Hence, the correct option is, 
Answer:
B. 10 mL of Cabr2(aq) at 35 degrees celsius
Explanation:
The colder something is the more the atoms are compressed together; atoms can't move as much. 35 degrees is the warmest option, so it makes the most sense.
We are asked to convert 25 cg to units of hg.
1 cg = 1 centigram = 10⁻² g
1 hg = 1 hectogram = 10² g
The options given are:
a) 1 hg/ 10² g
b) 10² cg/ 1 hg
c) 10² hg/ 1 cg
d) 10⁻² g/ 1 cg
To convert 25 cg to 1 hg, we could convert the 25 cg to grams first, then grams to hg.
25 cg · 10⁻² g/ 1cg = 0.25 g
Here we have converted our number from cg to grams. We can use another conversion of grams to hg to complete the conversion.
0.25 g · 1 hg/ 10² g = 0.0025 hg
Therefore, the first conversion we used was d) 10⁻² g/ 1 cg.