Answer:
. A closed system allows only energy transfer but no transfer of mass. Example: a cup of coffee with a lid on it, or a simple water bottle. ... In reality, a perfectly isolated system does not exist, for instance hot water in a thermos flask cannot remain hot forever.
As the temperature increases, the solubility of the solute in the liquid also increases. This is due to the fact that the increase in energy allows the liquid to more effectively break up the solute. The additoin of energy also shifts the equilibrium of the reation to the right since it takes energy to dissolve most things and you are adding more of it (this is explained with Le Chatlier principles).
I hope this helps and also I assumed that your question involved the solubility of an ionic substance in a solvent like water. If that was not your question feel free to say so in the comments so that I can answer your actually question.
Your question is incomplete. However, I found a similar problem fromanother website as shown in the attached picture.
To solve this problem, you must know that at STP, the volume for any gas is 22.4 L/mol. So,
Moles O₂: 156.8 mL * 1 L/1000 mL* 1 mol/22.4 L = 0.007 moles
Mass calcium: 0.007 mol O₂ * 2 mol Ca/1 mol O₂ * 40 g/mol Ca =
<em> 0.56 g Ca</em>
Your question isn't quite clear, but if you're wondering if a chemical is polar or non-polar, you simply draw a VSEPR sketch and draw arrows where the bonds are. Only draw arrows between atoms, NOT between an atom and a lone pair of electrons. The arrow should point to the most electronegative atom (you should be given an electronegativity scale). Afterwards, you add up the arrows as vectors, and look at the sum of the vectors. If the sum is zero (CH4 is a good example), the chemical is non-polar. If the sum is a vector, the chemical is polar (H2O, or water, is polar).
Continental drift is the movement of Earth’s continents over long periods of time. An evidence for this is that some continents look like puzzle pieces that can fit together, such as South America and Africa. Another evidence is that fossils of the same type have been found in different continents, far apart - suggesting that the two continents once were joined. Another evidence is that identical rocks were found at both sides of the Atlantic Ocean by Alfred Wegener, the main developer of the continents drift theory.