Answer:
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
Explanation:
The balanced reaction between nitrogen and hydrogen molecules to give ammonia molecules is:

Thus one molecule of nitrogen will react with three molecules of hydrogen to give two molecules of ammonia.
We have six molecules of each nitrogen and hydrogen in the closed container and they undergo complete reaction it means the limiting reagent is hydrogen. For six molecules of nitrogen, eighteen molecules of hydrogen will be required.
So six molecules of hydrogen will react with two molecules of nitrogen to give four molecules of ammonia.
The product mixture will have
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
I literally hate chem but I think it’s ionic, I’m not not completely sure but it kinda sounds about right . Not the best anwser haha hope it kinda helps lol
Answer:
2.67 mL
Explanation:
The following data were obtained from the question:
Mass of tetracycline = 2 mg
Density of tetracycline = 0.75 mg/mL
Volume of tetracycline =?
We can obtain the volume of the tetracycline that should be given to the patient by applying the following equation:
Density = mass /volume
0.75 = 2 / volume
Cross multiply
0.75 × Volume = 2
Divide both side by 0.75
Volume = 2/0.75
Volume = 2.67 mL
Therefore, the volume of the tetracycline that should be given to the patient is 2.67 mL
<h3>
Answer:</h3>
0.819 mol Ag
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
4.93 × 10²³ atoms Ag
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.818665 mol Ag ≈ 0.819 mol Ag
Answer : The temperature in degree Celsius is, 
Explanation :
The conversion used for the temperature from Kelvin to degree Celsius is:

where,
= temperature in Kelvin
= temperature in centigrade
As we are given the temperature in Kelvin is, 2.7
Now we have to determine the temperature in Kelvin.



Therefore, the temperature in degree Celsius is, 