Answer:
In a titration of 35.00 mL of 0.737 M H₂SO₄, 62.4 mL of a 0.827 M KOH solution is required for neutralization.
Explanation:
The balanced reaction is
H₂SO₄ + 2 KOH ⇒ 2 H₂O + K₂SO₄
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) 1 mole of H₂SO₄ is neutralized with 2 moles of KOH.
The molarity M being the number of moles of solute that are dissolved in a given volume, expressed as:

in units of 
then the number of moles can be calculated as:
number of moles= molarity* volume
You have acid H₂SO₄
- 35.00 mL= 0.035 L (being 1,000 mL= 1 L)
- Molarity= 0.737 M
Then:
number of moles= 0.737 M* 0.035 L
number of moles= 0.0258
So you must neutralize 0.0258 moles of H₂SO₄. Now you can apply the following rule of three: if by stoichiometry 1 mole of H₂SO₄ are neutralized with 2 moles of KOH, 0.0258 moles of H₂SO₄ are neutralized with how many moles of KOH?

moles of KOH= 0.0516
Then 0.0516 moles of KOH are needed. So you know:
- Molarity= 0.827 M
- number of moles= 0.0516
- volume=?
Replacing in the definition of molarity:

Solving:

volume=0.0624 L= 62.4 mL
<u><em>In a titration of 35.00 mL of 0.737 M H₂SO₄, 62.4 mL of a 0.827 M KOH solution is required for neutralization.</em></u>
Answer:
<u>reaction are equal.</u>
Explanation:
The law of the conservation of mass states that the total mass before and after a reaction are equal.
In a reaction, the mass of the reactants are always equal to the mass of the products. Nothing ever disappears from the equation, although substances may become gas and "disappear" the air.
The second one is more concentrated as they both times with the same thing but the second one (1.5) is bigger
The reflection from plane mirror is shown in the diagram.
<h3><u>Explanation</u>:</h3>
The mirror is a plane surface which can reflect light. The diagram attached shows the schematic representation of reflection that occurs in a plane mirror.
The laws of reflection states that the incident ray, reflected ray and the normal at the point of incidence lies at the same plane. Here we can also see that all are lying on a same plane.
The second law states that angle of incidence is equal to angle of reflection. Here we can also see that the i =r. It is applicable here too.
The motion of the molecules decreases.
<u>Explanation</u>:
- Gases are formed when the energy in a system overcomes the attractive forces between the molecules. The gases expand to fill the space they occupy. In this way, the gas molecules interact little. In the gaseous state, the molecules move very quickly. As the temperature decreases, the amount of movement of the individual molecules also decreases.
- The fast-moving particle slows down. When a particle speeds up, it has more kinetic energy. When a particle slows down, it has less kinetic energy. The particles in solid form are commonly connected through electrostatic powers. They don't get enough space to move around, therefore, their speed diminishes, they can't keep their standard speed like in the vaporous or fluid state.