All electromagnetic waves are amplitude, a characteristic frequency and wavelength, and the ability to travel through a vacuum at the same speed (the speed of light)
S₂O₈²⁻
(aq) + 2I⁻
(aq) → I₂(aq) + 2SO₄
²⁻(aq)
2S₂O₃²⁻
(aq) + I₂(aq) → S₄O₆²⁻
(aq) + 2I⁻
(aq)
<u>Explanation:</u>
S₂O₈²⁻
(aq) + 2I⁻
(aq) → I₂(aq) + 2SO₄
²⁻(aq)
To measure the rate of this reaction we must measure the rate of concentration change of one of the reactants or products. To do this, we will include (to the reacting S₂O₈
²⁻ and I⁻
i) a small amount of sodium thiosulfate, Na₂S₂O₃,
ii) some starch indicator.
The added Na₂S₂O₃ does not interfere with the rate of above reaction, but it does consume the I₂ as soon as it is formed.
2S₂O₃²⁻
(aq) + I₂(aq) → S₄O₆²⁻
(aq) + 2I⁻
(aq)
This reaction is much faster than the previous, so the conversion of I2 back to I⁻ is essentially instantaneous.
![rate = \frac{dI2}{dt} = \frac{1/2 [S2O3^2^-]}{t}](https://tex.z-dn.net/?f=rate%20%3D%20%5Cfrac%7BdI2%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%2F2%20%5BS2O3%5E2%5E-%5D%7D%7Bt%7D)
The answer would be <span>Tug Hill Plateau</span>
Answer : The value of
is 28.97 kJ/mol
Explanation :
To calculate
of the reaction, we use clausius claypron equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= vapor pressure at temperature
= 462.7 mmHg
= vapor pressure at temperature
= 140.5 mmHg
= Enthalpy of vaporization = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![-21.0^oC=[-21.0+273]K=252K](https://tex.z-dn.net/?f=-21.0%5EoC%3D%5B-21.0%2B273%5DK%3D252K)
= final temperature = ![45^oC=[-41.0+273]K=232K](https://tex.z-dn.net/?f=45%5EoC%3D%5B-41.0%2B273%5DK%3D232K)
Putting values in above equation, we get:
![\ln(\frac{140.5mmHg}{462.7mmHg})=\frac{\Delta H_{vap}}{8.314J/mol.K}[\frac{1}{252}-\frac{1}{232}]\\\\\Delta H_{vap}=28966.6J/mol=28.97kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B140.5mmHg%7D%7B462.7mmHg%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B252%7D-%5Cfrac%7B1%7D%7B232%7D%5D%5C%5C%5C%5C%5CDelta%20H_%7Bvap%7D%3D28966.6J%2Fmol%3D28.97kJ%2Fmol)
Therefore, the value of
is 28.97 kJ/mol
There are 6.022 × 10²³ atoms in 39.948 g of argon and 4.0026 g of helium.
Explanation:
39.945 g/mole is the molar mass of argon so 39.948 g of argon are equal to 1 mole of argon.
4.0026 g/mole is the molar mass of helium so 4.0026 g of helium are equal to 1 mole of helium.
We know that Avogadro's number tell us the number of particles in 1 mole of substance which is 6.022 × 10²³.
So in 39.948 g of argon and 4.0026 g of helium contains the same number of atoms, 6.022 × 10²³.
Learn more about:
Avogadro's number
brainly.com/question/14148121
brainly.com/question/1445383
brainly.com/question/1528951
#learnwithBrainly