To solve this we are going to use the future value of annuity due formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of payments per year

is the number of years
We know for our problem that

and

. To convert the interest rate to decimal for, we are going to divide the rate by 100%:


Since the payment is made quarterly, it is made 4 times per year; therefore,

.
Since the type of the annuity is due, payments are made at the beginning of each period, and we know that we have 4 periods, so

.
Lets replace those values in our formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=(1+ \frac{0.1}{4} )*295[ \frac{(1+ \frac{0.1}{4} )^{(4)(6)} -1}{ \frac{0.1}{4} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7B0.1%7D%7B4%7D%20%29%2A295%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.1%7D%7B4%7D%20%29%5E%7B%284%29%286%29%7D%20-1%7D%7B%20%5Cfrac%7B0.1%7D%7B4%7D%20%7D%20%20%5D%20)
We can conclude that the amount of the annuity after 10 years is $9,781.54
it's easy to by them Cheaper tbh with you
and it's a quiz Right??
Answer: Option d: -3*x^4*y + 2*x^2*y^2 + 5*y^3
Step-by-step explanation:
In standard form, the first term of the polynomial must be the term with the highest degree and on each subsequent term the degree decreases. In the case of two variables, the degree is equal to the sum of the exponents.
Then the correct option is d.
Where the degree of the first term is (4 + 1) = 5
The degree of the second term is (2 + 2) = 4
The degree of the third therm is 3.
We can see that the degree decreases as the term number increases, then the polynomial written in standard form is:
-3*x^4*y + 2*x^2*y^2 + 5*y^3
Answer:
m = -2
Step-by-step explanation:
Slope formula ---
m = y2-y1/x2-x1
m = 5-9/8-6
m = -4/2
m = -2