Answer:
1. Ionic bond
2. High melting point and high boiling point for ionic bonds while covalent bonds have low melting and boiling point.
3. The similarity is that ionic and covalent bonding lead to the creation of stable molecules.
4. 4Fe + 3O2 → 2Fe2O3
5. It uses the process of fission.
6. Fission involves the splitting of radioactive elements into smaller particles/compounds while Fusion involves combining of two or more atomic nuclei to form one or more different atomic nuclei and subatomic particles.
7. Nuclear power plants produce little to no greenhouse gas.
Nuclear power plants produce a large amount of energy for a small mass of fuel.
Nuclear is less expensive.
Answer:
<em><u>spontaneous composition</u></em> is the ingnition
of the substance due to the repid oxidation of its on material.
There is no requirement of heat of external sources.
<em><u>Rapid composition</u></em> on the other hand release large amount of heat and light energy.
Explosion and the firecracker is the best example of Rapid composition.
The average atomic mass of the imaginary element : 47.255 amu
<h3>Further explanation </h3>
The elements in nature have several types of isotopes
Isotopes are elements that have the same Atomic Number (Proton)
Atomic mass is the average atomic mass of all its isotopes
Mass atom X = mass isotope 1 . % + mass isotope 2.% ..
isotope E-47 47.011 amu, 87.34%
isotope E-48 48.008 amu, 6.895
isotope E-49 50.009 amu, 5.77%
The average atomic mass :

Explanation:
firstly find for the molar mass of kcl and molar mass of k
and then
molar mass of k = x
molar mass of kcl= 40
cross mutiply and then simplify you will get your answer
Answer: Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
Explanation:
According to Gay-Lussac's Law : 'The pressure of the gas increases with increase in temperature of the gas when volume of the gas is kept constant'.

At constant volume, pressure of the gas will decrease on decreasing the temperature or vice versa.
Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.