A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
The ml is also called as the magnetic quantum number. The value
of ml can range from –l to +l including zero. Hence all of the possible values for ml given
that l = 2 are:
<span>-2, -1, 0, + 1, + 2</span>
Answer:
moles of CO2 can be produced from a reaction of 10.0 moles C2H6
Explanation:
In this reaction -
2 moles of C₂H6 produces four molecules of Carbon dioxide (CO2)
So 1 mole of C₂H6 will produce
moles of Carbon dioxide (CO2)
Thus, 10 moles of C₂H6 will produce
moles of Carbon dioxide (CO2)