Half life is the time that it takes for half of the original value of some amount of a radioactive element to decay.
We have the following equation representing the half-life decay:

A is the resulting amount after t time
Ao is the initial amount = 50 mg
t= Elapsed time
t half is the half-life of the substance = 14.3 days
We replace the know values into the equation to have an exponential decay function for a 50mg sample

That would be the answer for a)
To know the P-32 remaining after 84 days we have to replace this value in the equation:

So, after 84 days the P-32 remaining will be 0.85 mg
Answer:
When hydrogen is subjected to large enough pressure, it solidifies according to theory.
Explanation:
According to theory, when hydrogen molecules are subjected to enormous degree of pressure the molecules will solidify.
What happens here is that the hydrogen–hydrogen bonds in the hydrogen molecule will break apart and the molecules collapses into hydrogen atoms.
Hence, when hydrogen is subjected to large enough pressure, it solidifies according to theory.
Answer:
I don't understand what you are asking
Answer:
5.4 tonnes.
Explanation:
The first step is to find the molar mass of Al2O3. Aluminum has a molar mass of about 27 and oxygen has a molar mass of about 16, so 2(27)+3(16)= 102g/mol=0.102kg/mol. 10200kg/0.102kg/mol=100,000 moles of Al2O3 in 10.2 tonnes. Multiplying this by the molar mass of the two aluminums, you get a total of 54*100,000=5400000g=5400kg=5.4 tonnes. Hope this helps!