Answer:
Backdoor
Explanation:
The back door fragment in a program allows user to access backdoor information without necessarily following the common security procedures needed. In this case, once the programmer keys in the username he or she logs in without putting password. Therefore, this is a backdoor fragment.
Answer:
vec(a) = 16 i + 16 j
mag(a) = 22.63 ft/s^2
Explanation:
Given,
- The two components of velocity are given for fluid flow:
u = 4*y ft/s
v = 4*x ft/s
Find:
What is the time rate of change of the velocity vector V (i.e., the acceleration vector) for a fluid particle at x = 1 ft. and y = 1 ft. at time t = 1 second?
Solution:
- The rate of change of velocity is given to be acceleration. We will take derivative of each components of velocity with respect to time t:
a_x = du / dt
a_x = 4*dy/dt
a_y = dv/dt
a_y = 4*dx/dt
- The expressions dx/dt is the velocity component u and dy/dt is the velocity component v:
a_x = 4*(4*y) = 16y
a_y = 4*(4*x) = 16x
- The acceleration vector can be expressed by:
vec(a) = 16y i + 16x j
- Evaluate vector (a) at x = 1 and y = 1:
vec(a) = 16*1 i + 16*1 j = 16 i + 16 j
- The magnitude of acceleration is given by:
mag(a) = sqrt ( a^2_x + a^2_y )
mag(a) = sqrt ( 16^2 + 16^2 )
mag(a) = 22.63 ft/s^2
Answer:
See explaination
Explanation:
The volume flow rate Q Q QQ of a fluid is defined to be the volume of fluid that is passing through a given cross sectional area per unit time.
Kindly check attachment for the step by step solution of the given problem.
Answer:
I was bored so I daydreamed of me meeting the Henry Danger/Danger Force Cast, when I started talking to the "Imaginary Henry" besides me.
Explanation:
It wasn't actually the funniest, and tbh this isn't quite funny, but I answered the question!