Answer:
c. and d
Explanation:
As a whistle-blower, one of your aim is to guide against unethical dealings of other people , hence you are creating an environment that uphold ethical conduct,
In addition, whistle-blowing will disclose all imminent dangers to the software community thereby preventing security breaches.
Answer:
R = ![\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%26cos30%26-sin30%5C%5C0%26sin30%26cos30%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%2060%26-sin60%260%5C%5Csin60%26cos60%2660%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
Explanation:
The mappings always involve a translation and a rotation of the matrix. Therefore, the rotation matrix will be given by:
Let
and
be the the angles 60⁰ and 30⁰ respectively
that is
= 60⁰ and
= 30⁰
The matrix is given by the following expression:
![\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%26cos30%26-sin30%5C%5C0%26sin30%26cos30%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%2060%26-sin60%260%5C%5Csin60%26cos60%2660%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
The angles can be evaluated and left in the surd form.
Answer: Hello the question is incomplete below is the missing part
Question: determine the temperature, in °R, at the exit
answer:
T2= 569.62°R
Explanation:
T1 = 540°R
V2 = 600 ft/s
V1 = 60 ft/s
h1 = 129.0613 ( value gotten from Ideal gas property-air table )
<em>first step : calculate the value of h2 using the equation below </em>
assuming no work is done ( potential energy is ignored )
h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778
∴ h2 = 136.17 Btu/Ibm
From Table A-17
we will apply interpolation
attached below is the remaining part of the solution
Answer:

Explanation:
Approximately, we can use the ideal gas law, below we see how we can deduce the density from general gas equation. To do this, remember that the number of moles n is equal to
, where m is the mass and M the molar mass of the gas, and the density is
.
For air
and 
So, 
