Your allowed to switch lanes as long as the road is clear and you use signals.
Answer:
Explanation:
Given that:
The Inside pressure (p) = 1402 kPa
= 1.402 × 10³ Pa
Force (F) = 13 kN
= 13 × 10³ N
Thickness (t) = 18 mm
= 18 × 10⁻³ m
Radius (r) = 306 mm
= 306 × 10⁻³ m
Suppose we choose the tensile stress to be (+ve) and the compressive stress to be (-ve)
Then;
the state of the plane stress can be expressed as follows:

Since d = 2r
Then:







When we take a look at the surface of the circular cylinder parabolic variation, the shear stress is zero.
Thus;

Answer:
The height of the water is 1.25 m
Explanation:
copper properties are:
Kc=385 W/mK
D=20x10^-3 m
gc=8960 kg/m^3
Cp=385 J/kg*K
R=10x10^-3 m
Water properties at 280 K
pw=1000 kg/m^3
Kw=0.582
v=0.1247x10^-6 m^2/s
The drag force is:

The bouyancy force is:

The weight is:

Laminar flow:

Reynold number:

Not flow region
For Newton flow region:







Answer:
The volume of the gas is 11.2 L.
Explanation:
Initially, we have:
V₁ = 700.0 L
P₁ = 760.0 mmHg = 1 atm
T₁ = 100.0 °C
When the gas is in the thank we have:
V₂ =?
P₂ = 20.0 atm
T₂ = 32.0 °C
Now, we can find the volume of the gas in the thank by using the Ideal Gas Law:

(1)
Where R is the gas constant
With the initials conditions we can find the number of moles:
(2)
By entering equation (2) into (1) we have:

Therefore, When the gas is placed into a tank the volume of the gas is 11.2 L.
I hope it helps you!
Answer:
Given data:
Equation of the state 
Where p = pressure of fluid, pα
T = Temperature of fluid, k
V = Specific volume of fluid 
R = gas constant , 
a, b = Constants
Solution:
Specific heat difference, 
According to cyclic reaction

Hence specific heat difference is

Equation of state, 
Differentiating the equation of state with respect to temperature at constant volume,


Differentiating the equation of the state with respect to volume at constant temperature.

Substituting both eq (3) and eq (4) in eq (2)
We get,

Specific heat difference equation,
