The balanced chemical reaction is:<span>
</span><span>2C6H6 + 15O2 → 12CO2 + 6H2O</span><span>
We
are given the amount of carbon dioxide to be produced for the reaction. This will
be the starting point of our calculations.
</span>42 g CO2 ( 1 mol CO2 / 44.01 g CO2) ( 2 mol C6H6 / 12 mol CO2 ) (78.1074 g C6H6 / 1 mol C6H6) = 12.42 grams of C6H6
Answer:
Left or up, either one of those
Explanation:
Answer:
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him In Brainly Question,
░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take
░░░░░░░▀███▀█░▄░░ Over Brainly
Explanation:
The correct answer is Lo.
The gravitational force between the two components is directly equivalent to the product of their masses and is inversely proportional to the distance separated between them. The largest planet in the solar system is Jupiter. It comprises 75 moons, and out of these moons, the four Galilean moons are very big in mass. These are Lo, Europa, Ganymede, and Callisto.
Of these Galilean moons, the Lo moon is very close to Jupiter. The Ganymede moon is the largest of all the Galilean moons, but it is situated very far from Jupiter in comparison to Lo. Thus, the force of attraction between the Lo and Jupiter is very high, it exhibits the greatest gravitational force with Jupiter.
<span> the line-emission spectrum of an atom is caused by the energies released when electrons. releases energy of only certain values. </span>