No, hydrogen can only hold one bond and that's it. It only needs to be paired with one bond.
Answer:

Explanation:
<u>Molecular formula from Glucose:</u>
C₆H₁₂O₆
<u>3 moles of Glucose:</u>
3C₆H₁₂O₆
In 1 mole of Glucose, there are 12 hydrogen atoms.
<u>In 3 moles:</u>
= 12 × 3
= 36 H atoms
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
did you have options, cause if you did chose something alond the lines of
Explanation:
A real gas is a gas that does not behave as an ideal gas due to interactions between gas molecules. A real gas is also known as a nonideal gas because the behavior of a real gas in only approximated by the ideal gas law.
Answer:
The specific heat of zinc is 0.361 J/g°C
Explanation:
<u>Step 1:</u> Data given
44.0 J needed
Mass of solid zinc = 10.6 grams
Initial temperature = 24.9 °C
Final temperature = 36.4 °C
<u>Step 2</u>: Calculate the specific heat of zinc
Q = m*c*ΔT
⇒ with Q = heat (in Joule) = 44.0 J
⇒ with m = the mass of the solid zinc = 10.6 grams
⇒ with c = the specific heat of the zinc = TO BE DETERMINED
⇒ with ΔT = The change in temperature = T2-T1 = 36.4 °C - 24.9 °C = 11.5 °C
44.0 J = 10.6 grams * c * 11.5°C
c = 44.0 J / (10.6g * 11.5 °C)
c = 0.361 J/g°C
The specific heat of zinc is 0.361 J/g°C
The balanced chemical reaction is:
<span>2 I2 + KIO3 + 6 HCl ---------> 5 ICl + KCl + 3 H2O
</span>
We are given the amount of the product to be produced from the reaction. This will be the starting point of our calculations.
28.6 g ICl (1 mol / 162.35 g ICl ) ( 2 mol I2 / 5 mol ICl ) ( 253.81 g I2 / 1 mol I2 ) = 17.88 g I2