Answer:
0.5m/s^2
Explanation:
We can use the formula [ F = ma ] but solve for "a" since that is what we are looking for.
F = ma
F/m = a
We know the net force and mass so substitute those values and simplify.
500/1000 = 0.5m/s^2
Best of Luck!
Answer:
Newton's second law of motion describes the relationship between force and acceleration. They are directly proportional. If you increase the force applied to an object, the acceleration of that object increases by the same factor. In short, force equals mass times acceleration.
Explanation:
The charge present determines a force to be attractive or repulsive.
The charges acquired by two bodies determines the Force as Attractive Or Repulsive.
Electric Force applied due to Electrical charges is same in magnitude but opposite in direction. This corresponds this phenomenon equivalent to the Newton's Third Law.
Examples of the experiments and observations:
- On combing hair through a comb and then keeping it close to small pieces of paper shows attraction of paper pieces towards the comb.
This occurs due to the Electric charges present in the comb that induces charge in paper pieces leading to their attraction.
- In both Gravitational Force and Coulomb force, the force remains inversely proportional to the square of the distance following the Inverse Square Law being the Central Force system. This only differs by the fact that in Gravitational Force, masses are used and in Coulomb force, charges are used.
The more the distance between the charges, the less is the Electric Force.
The lesser the distance between the charges, the more is the Electric Force.
If both the objects are charged the same i.e. either positive or negative then the Force is Repulsive and if the charges are Oppositely charged then the force is attractive.
Hence, the charge present determines a force to be attractive or repulsive.
Learn more about Coulomb Force here, brainly.com/question/15451944
#SPJ4
Answer:
It's actually
F=ma
Force=Mass x Acceleration
So...when we inverse it..
It becomes:
B. a= F/m