the answer in my opinion would be A
Answer: Option B: 1.3×10⁵ W
Explanation:


Work Done, 
Where s is displacement in the direction of force and F is force.

where, v is the velocity.
It is given that, F = 5.75 × 10³N
v = 22 m/s
P = 5.75 × 10³N×22 m/s = 126.5 × 10³ W ≈1.3×10⁵W
Thus, the correct option is B
The final speed of an airplane is v = 92.95 m/s
The rate of change of position of an object in any direction is known as speed i.e. in other word, Speed is measured as the ratio of distance to the time in which the distance was covered.
Solution-
Here given,
Acceleration a= 10.8 m/s2 .
Displacement (s)= 400m
Then to find final speed of airplane v=?
Therefore from equation of motion can be written as,
v²=u²+ 2as
where, u is initial speed, v is final speed ,a is acceleration and s is displacement of the airplane. Therefore by putting the value of a & s in above equation and (u =0) i.e. the initial speed of airplane is zero.
v²= 2×10.8 m/s²×400m
v²=8640m/s
v=92.95m/s
hence the final speed of airplane v =92.95m/s
To know more about speed
brainly.com/question/13489483
#SPJ4
Energy Conservation Theory,




<h3>What is law of energy conservation?</h3>
The principle of energy conservation states that energy is neither created nor destroyed. It may change from one sort to another. Just like the mass conservation rule, the legitimacy of the preservation of energy depends on experimental perceptions; hence, it is an experimental law. The law of preservation of energy, too known as the primary law of thermodynamics
To learn more about Energy Conservation Theory, visit;
brainly.com/question/8004680
#SPJ4
Answer:
Current through each phase Vp = 2.2A
Total three phase power Pt= 1.45kW
Power factor of the load pf = 1
Explanation:
i) Find current through each phase
Vp =220V (rms)
Z =100 Ω
I = Vp/Z
= 220/100
= 2.2A
ii) Find the total three phase power
for a resistive load, Power, P = VI
Power for each phase is given as:
P = 220 * 2.2
= 484 W
Total power TP =3* P
=484*3
= 1452W
=1.45kW
iii) Find the power factor of the load
Phase angle for a resistive load is 0.
α= 0
Hence, power factor of load = cos α
pf = cos 0
pf = 1