1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
2 years ago
6

Why can you not put diesel in a regular car?

Physics
2 answers:
goblinko [34]2 years ago
6 0
It's not compatible. It's like putting metal in a microwave; it's not going to go well (sorry I don't have a scientific answer, I'm just thinking out loud). 
Ilia_Sergeevich [38]2 years ago
4 0
It will mess up the car's engine, and get stuck in the carburetor.
You might be interested in
Please help me. i have 2 hours
mestny [16]

the missing word is clockwise moment. I hope this helps good luck

7 0
3 years ago
a light beam that hits a mirror at an angle of 36°... what is the Angle of Incidence? Angle of Reflection?​
Kipish [7]

Angle of incidence is 36° and so is the reflection. Both angles are equal.

6 0
3 years ago
A 4.0-kg object is supported by an aluminum wire of length 2.0 m and diameter 2.0 mm. How much will the wire stretch?
forsale [732]

Answer:

The extension of the wire is 0.362 mm.

Explanation:

Given;

mass of the object, m = 4.0 kg

length of the aluminum wire, L = 2.0 m

diameter of the wire, d = 2.0 mm

radius of the wire, r = d/2 = 1.0 mm = 0.001 m

The area of the wire is given by;

A = πr²

A = π(0.001)² = 3.142 x 10⁻⁶ m²

The downward force of the object on the wire is given by;

F = mg

F = 4 x 9.8 = 39.2 N

The Young's modulus of aluminum is given by;

Y = \frac{stress}{strain}\\\\Y = \frac{F/A}{e/L}\\\\Y = \frac{FL}{Ae} \\\\e = \frac{FL}{AY}

Where;

Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

e = \frac{FL}{AY} \\\\e = \frac{(39.2)(2)}{(3.142*10^{-6})(69*10^9)} \\\\e = 0.000362 \ m\\\\e = 0.362 \ mm

Therefore, the extension of the wire is 0.362 mm.

8 0
2 years ago
1) A boy drags a wooden crate with a mass of 20 kg, a distance of 12 m, across a rough level floor at a constant speed of 1.5 m/
mojhsa [17]

Answer: a) 49.560 and 21.13 b) i) 50 N, ii) 196 N iii) 196 N iv) 47.685 N

c) i) 594.72 ii) 0 iii) 0 iv) 0

d) 594.72

Explanation: question a)

The force is inclined at an angle of 25° to the horizontal

The horizontal component of force = 50 cos 25° = 49.560 N

The vertical component of force = 50 sin 30°= 21.130N

Question b)

i) according to the question applied force is 50 N

ii) if g = 9.8m/s², w=mg where m = mass of object = 20kg hence weight = 20* 9.8 = 196 N

iii) the normal force is the force the floor exerts on the body as a result of the weight of the object.

Normal reaction R = W = mg, we already deduced that w = mg, hence R = 196 N.

iv) according to newton's laws of motion

F - Fr = ma

F = applied force = horizontal component of force = 49.560 N.

We need to get the acceleration (a) by using Newton laws of motion before we can be able to compute the frictional force..

The body started from rest hence initial velocity u = 0

Final velocity v = 1.5m/s distance covered (s) = 12m

v ² = u² + 2as

But u = 0

v² = 2as

1.5² = 2(a) * 12

2.25 = 24a

a = 2.25/24 = 0.09735m/s²

From F - Fr = ma

49.560 - Fr = 20 * 0.09735

49.560 - Fr = 1.875

Fr = 49.560 - 1.875

Fr = 47.685 N

Question c)

i) The applied force = 49.560 N, distance covered = 12m

Work done = force * distance

Work done = 49.560 * 12

Work done = 594.72 J

ii) the weight of the object does not make the object move a distance, hence work done = 0 ( since distance covered is 0)

iii) the normal force is the same thing as the weight and they did not cover any distance hence work done is zero.

iv) the frictional force does not cover any distance, hence work done is zero.

Question d)

The total work done = work done by applied force + work done by weight + work done by normal reaction + work done by frictional force.

Total work done = 594.72 + 0 + 0 + 0 = 594.72 J

8 0
2 years ago
All isotopes of a particular element have the same atomic number. How then do the isotopes of a particular element differ?
xz_007 [3.2K]
Isotopes of an element will contain the same number of protons and electrons but will differ in the number of neutrons they contain. In other words, isotopes have the same atomic number because they are the same element but have a different atomic mass because they contain a different number of neutrons
7 0
3 years ago
Other questions:
  • which organelle in the plant cell would mainly help the cell tack in water or get rid of water just like the potato did? this is
    14·1 answer
  • The magnetic field due to the loop always opposes the external magnetic field.(b) The flux due to the loop always has the opposi
    15·1 answer
  • Like electric charges repel each other. T F
    14·2 answers
  • A truck driver is going opposite traffic on a one-way street. A police officer sees him but doesn't stop him. Why didn't the pol
    13·1 answer
  • The electric resistance in a length of wire is doubled when the wire is _________.
    6·1 answer
  • Move the Earth so it is one box from the Sun. (Note: one box side equals about 46,000,000 miles.) Do not change the length of th
    9·1 answer
  • Suppose that the height (in centimeters) of a candle is a linear function of the amount of time (in hours) it has been burning.
    9·1 answer
  • A car traveling at 37m/s starts to decelerate steadily. It comes to a complete stop in 15 seconds. What is it’s acceleration
    15·1 answer
  • Batman, whose mass is 89.5 kg, is holding on to the free end of a 13.4 m rope, the other end of which is fixed to a tree limb ab
    12·1 answer
  • Find the ratio of the Coulomb electric force Fe to the gravitational force Fo between two
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!