Answer:
For the first blank, the answer is decreases. For the second blank, the answer is increases. And finally for the third blank, the answer is decreases.
Explanation:
For the first blank, the answer is decreases. For the second blank, the answer is increases. And finally for the third blank, the answer is decreases.
When a liquid is cooled, the kinetic energy of the particles decreases. The force of attraction between the particles increases, the space between the particles decreases, and the matter changes its state to solid.
It's actually Friction.
I just did the test and got it right.
Answer:
FB = 0.187 N
Explanation:
To find the magnetic force FB in the wire you use the following formula:

the angle between B and L is given by:

Due to B depends on "y" you take into account the contribution of each element dy of the wire to the magnitude of the magnetic force. Thus, you have to integrate the following expression:
![|\vec{F_B}|=Isin\theta\int_0^{0.25}B(y)dy=Isin\theta\int_0^{0.25}(0.5y)dy\\\\|\vec{F_B}|=(2.0*10^{-3}A)(sin36.86\°)(0.5T)[\frac{0.25^2}{2}m]=0.187\ N](https://tex.z-dn.net/?f=%7C%5Cvec%7BF_B%7D%7C%3DIsin%5Ctheta%5Cint_0%5E%7B0.25%7DB%28y%29dy%3DIsin%5Ctheta%5Cint_0%5E%7B0.25%7D%280.5y%29dy%5C%5C%5C%5C%7C%5Cvec%7BF_B%7D%7C%3D%282.0%2A10%5E%7B-3%7DA%29%28sin36.86%5C%C2%B0%29%280.5T%29%5B%5Cfrac%7B0.25%5E2%7D%7B2%7Dm%5D%3D0.187%5C%20N)
hence, the magnitude of the magnetic force is 0.187N