The correct answer is "All of the above".
In fact, electromagnetic induction occurs when there is a change of the magnetic flux through the area enclosed by a circuit (in this case, the area enclosed by the wire loop).
The magnetic flux

through a certain surface is given by

(1)
Where B is the intensity of the magnetic field, A is the area enclosed by the circuit and

is the angle between the direction of the field B and the perpendicular to the area.
In the first situation, the magnet is getting closer to the loop, so the magnetic flux through the area enclosed by the wire is increasing (because the intensity of the magnetic field B is increasing). Situation 2) is the opposite case: the wire loop is moving away from the magnet, so the intensity of the magnetic field B is decreasing, and therefore the magnetic flux is decreasing as well.
Finally, in the third situation the wire loop is rotating. Here the distance between the loop and the magnet is not changing, but remember that the magnetic flux depends also on the angle between the direction of the magnetic field and the perpendicular (formula 1), and so since the wire loop is rotating, than this angle is changing, therefore the magnetic flux is changing as well.
<span>Answer:
So it gets to the top of the ramp and stops. The parallel force pushing it down the ramp is mg sin θ, but for it to move, the frictional force must be overcome. This frictional force is μmg cos θ, where μ is the coefficient of static friction. For movement, then,
mg sin θ > μmg cos θ ==> tan θ > μ ==> θ > arctan 0.5 = 26.565° ==> θ = 27°</span>
The number of protons
number of neutrons=the mass number- number of protons
14-6=8
As we know that time period of simple pendulum is given as
T = 2π √L/g
here we know that
T = 3.8 s
now from above equation we know that
T² = 4π² (L/g)
now on rearranging the above equation we will have
L = gT² / 4π²
now plug in all data into it
L = (9.8) (3.8)² / (4) (3.14)²
so the length of the cable must be 3.6 m