Answer:
(e) 3.2
Explanation:
We are given that vector C and D.
Let R be the magnitude of C+D.
According to question
R=3D
We have to find the ratio of the magnitude of C to that of D.
By using right triangle property
Hence, the ratio of the magnitude of C to that of D=3.2
(e) 3.2
I don’t know really really I don’t know
Mass of the block = 1.4 kg
Weight of the block = mg = 1.4 × 9.8 = 13.72 N
Normal force from the surface (N) = 13.72 N
Acceleration = 1.25 m/s^2
Let the coefficient of kinetic friction be μ
Friction force = μN
F(net) = ma
μmg = ma
μg = a
μ =
μ =
μ = 0.1275
Hence, the coefficient of kinetic friction is: μ = 0.1275
The question is asking to calculate the object's speed v1, v2, v3 at the certain time is the given of the problem, in my calculation, I would say that the speed would be 2m/s, 1.5m/s, 0.22m/s. I hope you are satisfied with my answer and feel free to ask for more if you have question and further clarification
<span>g = GMe/Re^2, where Re = Radius of earth (6360km), G = 6.67x10^-11 Nm^2/kg^2, and Me = Mass of earth. On the earth's surface, g = 9.81 m/s^2, so the radius of your orbit is:
R = Re * sqrt (9.81 m/s^2 / 9.00 m/s^2) = 6640km
here, the speed of the satellite is:
v = sqrt(R*9.00m/s^2) = 7730 m/s
the time it would take the satellite to complete one full rotation is:
T = 2*pi*R/v = 5397 s * 1h/3600s = 1.50 h
Hope it help i know it's long and may be confusing but if you have any more questions regarding this topic just hmu! :)</span>