Infrared contains the least energy and ultraviolet contains the most energy. The energy of a wave is inversely proportional to its
Answer:
The average velocity would be 217 m/s.
Explanation:
Average velocity is calculated by v(avg)=final velocity+inital velocity over 2
Displacement is the change in position (vector)
Velocity is calculated by s= d/t distance/time
Answer:
(c) The planet must have a mass about the same as the mass of Jupiter,
(d) The planet must be closer to the star than Earth is to the Sun.
Explanation:
Astrometry is the ideal method to detect high-mass planets that are close to their star. That is because the gravitational effect that it will have the planet over its host star will be greater. This effect can be seen as a wobble in the star as a consequence of how they orbit a common center of mass¹. The center of mass will be closer to the most massive object, So, in the case of an extrasolar planet with masses like Jupiter (Jovian), this point will be a little bit farther from the star, making the wobble more notable than in a system with a low-mass planet.
Key terms:
Astrometry: study of the position of the stars over time in the sky.
¹Center of mass: a geometrical point in which the mass from a whole system is summed.
Answer:
True.
Explanation:
Newton's First Law of Motion states that every object continues in it's state of rest or of uniform motion in a straight line unless acted upon by an external force.
Answer:
15km/h East (15m/s East option)
Explanation:
Velocity = (change in) Distance/(change in) Time
The distance here is 60km, and the time is 4h, as given by the question. Therefore the velocity is 60km/4h = 15km/h.
To convert km/h to m/s, we just divide the value by 3.6, 15/3.6= 4.17m/s (2dp), which isn't actually an option here, so I'm assuming maybe a mistake in unit for the question?
'Velocity' is a vector quantity, meaning it has a size<em> </em>and a direction, as opposed to speed, a scalar quantity, which only has size. Therefore we need to add a direction for it to be velocity. The given direction here is east, so the velocity of the car is 15km/h East. (I would choose the 15m/s East as the question likely has a unit error and is closest.)
Hope this helped!