Moving down in a group, the electronegativity decreases due to an increase in the distance between the nucleus and the valence electron shell, thereby decreasing the attraction, making the atom have less of an attraction for electrons or protons.
Answer:
0.0611M of HNO3
Explanation:
<em>The concentration of the NaOH solution must be 0.1198M</em>
<em />
The reaction of NaOH with HNO3 is:
NaOH + HNO3 → NaNO3 + H2O
<em>1 mole of NaOH reacts per mole of HNO3.</em>
That means the moles of NaOH used in the titration are equal to moles of HNO3.
<em>Moles HNO3:</em>
12.75mL = 0.01275L * (0.1198mol / L) = 0.0015274 moles NaOH = Moles HNO3.
In 25.00mL = 0.025L -The volume of the aliquot-:
0.00153 moles HNO3 / 0.025L =
<h3> 0.0611M of HNO3</h3>
Answer: 84.56L
Explanation:
Initial volume of gas V1 = 100L
Initial temperature T1 = 135°C
Convert temperature in Celsius to Kelvin
( 135°C + 273 = 408K)
Final temperature T2 = 72°C
( 72°C + 273= 345K)
Final volume V2 = ?
According to Charle's law, the volume of a fixed mass of a gas is directly proportional to the temperature.
Mathematically, Charles' Law is expressed as: V1/T1 = V2/T2
100L/408K = V2/345K
To get the value of V2, cross multiply
100L x 345K = V2 x 408K
34500 = V2 x 408K
V2.= 34500/408
V2 = 84.56L
Thus, the volume of the gas becomes 84.56 liters