The energy required to heat 40g of water from -7 c to 108 c is
1541000 joules
calculation
Q(heat)= M( mass) x c(specific heat capacity) xdelta t( change in temperature)
M= 40g= 40/1000= 0.04 Kg
C= 335,000 j/kg/c
delta T ( 108 --7= 115 c)
Q is therefore = 0.04 g x 335000 j/kg/c x 115 c = 1541,000 joules
Answer:
The calorimeter constant is = 447 J/°C
Explanation:
The heat absorbed or released (Q) by water can be calculated with the following expression:
Q = c × m × ΔT
where,
c is the specific heat
m is the mass
ΔT is the change in temperature
The water that is initially in the calorimeter (w₁) absorbs heat while the water that is added (w₂) later releases heat. The calorimeter also absorbs heat.
The heat absorbed by the calorimeter (Q) can be calculated with the following expression:
Q = C × ΔT
where,
C is the calorimeter constant
The density of water is 1.00 g/mL so 50.0 mL = 50.0 g. The sum of the heat absorbed and the heat released is equal to zero (conservation of energy).
Qabs + Qrel = 0
Qabs = - Qrel
Qcal + Qw₁ = - Qw₂
Qcal = - (Qw₂ + Qw₁)
Ccal . ΔTcal = - (cw . mw₁ . ΔTw₁ + cw . mw₂ . ΔTw₂)
Ccal . (30.31°C - 22.6°C) = - [(4.184 J/g.°C) × 50.0 g × (30.31°C - 22.6°C) + (4.184 J/g.°C) × 50.0 g × (30.31°C - 54.5°C)]
Ccal = 447 J/°C
Answer:
Allows diffusion of sub...(true)
its found in both anim...(true)
produces en...(false)
Answer:
Fahrenheit
Explanation:
Bc i said so LOL JKJK ABAHGTRDSED
Answer:
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓
Ksp = [2s]² . [s] → 4s³
Explanation:
Ag₂CrO₄ → 2Ag⁺ + CrO₄⁻²
Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓ Ksp
That's the expression for the precipitation equilibrium.
To determine the solubility product expression, we work with the Ksp
Ag₂CrO₄ (s) ⇄ 2Ag⁺ (aq) + CrO₄⁻² (aq) Ksp
2 s s
Look the stoichiometry is 1:2, between the salt and the silver.
Ksp = [2s]² . [s] → 4s³