Answer:
The boiling point is 308.27 K (35.27°C)
Explanation:
The chemical reaction for the boiling of titanium tetrachloride is shown below:
Ti
⇒ Ti
ΔH°
(Ti
) = -804.2 kJ/mol
ΔH°
(Ti
) = -763.2 kJ/mol
Therefore,
ΔH°
= ΔH°
(Ti
) - ΔH°
(Ti
) = -763.2 - (-804.2) = 41 kJ/mol = 41000 J/mol
Similarly,
s°(Ti
) = 221.9 J/(mol*K)
s°(Ti
) = 354.9 J/(mol*K)
Therefore,
s° = s° (Ti
) - s°(Ti
) = 354.9 - 221.9 = 133 J/(mol*K)
Thus, T = ΔH°
/s° = [41000 J/mol]/[133 J/(mol*K)] = 308. 27 K or 35.27°C
Therefore, the boiling point of titanium tetrachloride is 308.27 K or 35.27°C.
Answer:
1.3 × 10³ cm³
Explanation:
The gas occupies a volume of V₁ = 310 cm³ under standard temperature and pressure (STP), that is, T₁ = 273.15 K and P₁ = 1.0 atm. In order to find the volume V₂ under different conditions we can use the combined gas law formula.

I believe it is A because the plant is offering protection while the bacteria is converting it in to nitrogen that the plant can use!
Answer:
Explanation:
Chlorine has electronic configuration of 2 , 8 , 7
In n = 3 there are 7 electrons out of which 2 are in s , and 5 are in p . But out of 5 electrons in p , one electron jumps into d orbital . so the electronic configuration becomes as follows
= 7

These orbitals like sp³d hybridise to form 7 degenerate orbitals out of which 2 orbitals contain electrons in pairs and rest three are singly occupied by electrons.( unpaired electrons )
Answer:
Option D - It tells which compounds will dissolve in water.
Explanation:
It is used to predict whether or not a given ionic compound is soluble.