Answer: V = 15 m/s
Explanation:
As stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,
F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz
Using doppler effect formula
F = C/ ( C - V) × f
Where
F = observed frequency
f = source frequency
C = speed of light = 3×10^8
V = speed of the car
Substitute all the parameters into the formula
2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10
2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)
1.000000049 = 3×10^8/(3×10^8 - V)
Cross multiply
300000014.7 - 1.000000049V = 3×10^8
Collect the like terms
1.000000049V = 14.71429
Make V the subject of formula
V = 14.71429/1.000000049
V = 14.7 m/s
The speed of the car is 15 m/s approximately
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:
where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,
Now using thin lens formula:
<u>f = 1 m</u>
Answer:
Distance of 400m.
Explanation:
Use your kinematics equation to solve for distance (we can use kinematics b/c acceleration is constant).
d = (initial velocity x time) + 1/2 at^2
d = (20 x 10) + 1/2 (4) (10)^2
d = 200 + 200
d = 400 m
The answer is B because oil = blockage of air and it pressures the water to be density of 0.90
Nothing at all it can't get
smalljnnñj