Answer:
A) Impulse is the same for both the objects
B) The higher is the speed, the greater will be the height.
Explanation:
Part a)
The time of interaction of the two bodies i.e the hanging mass and the stick is same. Thus, force caused by dart on the block = force caused by block on the dart. Hence, impulse is the same for both the objects.
Part B
The energy will be conserved in the entire reaction process
Hence, Kinetic energy = potential energy
0.5Mv^2 = gh(md+mb)
H is directly proportional to the square of speed.
Hence, the higher is the speed, the greater will be the height.
Answer:
Explanation:
Explain how a projectile might be modified to decrease the air resistance impacting its trajectory.
As we know that :

Power, is in Meter. So divide focal length by 100

Answer:
C. 3.2 x 10^8 Ω•m
Explanation:
An insulator is a material that resists the flow of electricity.
In the given data the material with the highest resistivity is the best insulator
3.2 x 10^8 Ω•m
The final velocity of the red barge in the collision elastic is 0.311 m/s when it collides with blue barge pf mass 1000000 kg.
Final velocity(v3) of the red barge is calculated by following formula
m1×v1+ m2×v2= (m1+m2)v3
Substituting the value of m1= 150000 kg, v1= 0.25 m/s, m2= 1000000 kg, v2= 0.32 m/s
150000 × 0.25+ 1000000×0.32= (150000+1000000)×v3
37500+ 320000= 1150000×v3
357500= 1150000×v3
v3= 0.311 m/s
<h3>What is elastic collision velocity? </h3>
- The velocity of the target particle after a head-on elastic impact in which the projectile is significantly more massive than the target will be roughly double that of the projectile, but the projectile velocity will remain virtually unaltered.
For more information on elastic collision velocity kindly visit to
brainly.com/question/29051562
#SPJ9