Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation:
Complete Question
The complete question is shown on the first uploaded image
Answer:
a it is always zero
b 0
c 
Explanation:ss
Here the net charge is on the outer surface of the conductor thus this means that the net charge inside the conductor is zero
Generally the charge density of a conductor is dependent on the charge per unit area which implies that the charge density is dependent on the net charge so this means that the charge density inside the conductor is zero
Generally the direction of electric field this from the positive charge to the negative charge so from the question we can deduce that the negative charge is located on the surface of the conductor
So We can mathematically define the charge density on the surface of the electric field as
∮
Where E is the electric field
change in unit area
is the negative charge
is the permittivity of free space
So



Where
is the charge density
Good. You can do some very interesting experiments with that equipment.
<span>Like charges repel and opposite charges attract.
The further away two charged objects are the weaker the electrical force between them.
The closer two charged objects are the stronger the electrical force between them.
Hope this helps :)</span>
The earth's liquid outer core is the major cause of the earth’s magnetic field.
<h3>
What is magnetic field?</h3>
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, a vector field. A force acting on a charge while it travels through a magnetic field is perpendicular to both the charge's motion and the magnetic field. The magnetic field of a permanent magnet attracts or repels other magnets as well as ferromagnetic elements like iron. A magnetic field that varies with location will also exert a force on a variety of non-magnetic materials by changing the velocity of those particles' outer electrons. Electric currents, like those utilised in electromagnets, and electric fields that change over time produce magnetic fields that surround magnetised things.
To learn more about magnetic field,visit:
brainly.com/question/11514007
#SPJ4