All chemical reactions are chemical changes. The Law of Conservation of Matter states that matter cannot be created or destroyed. In a physical change, substances can change form, but the total mass remains the same. In a chemical change, the total mass of the reactants always equals the total mass of the products.
Sodium atom , potassium atom and cesium atom have the same group number which is group 1
The balanced equation for the reaction is as follows
Na₂CO₃ + 2HCl --> 2NaCl + CO₂ + H₂O
stoichiometry of Na₂CO₃ to HCl is 1:2
number of Na₂CO₃ moles reacted = molarity x volume
number of Na₂CO₃ moles = 0.100 mol/L x 0.750 L = 0.0750 mol
according to molar ratio of 1:2
1 mol of Na₂CO₃ reacts with 2 mol of HCl
then 0.0750 mol of Na₂CO₃ mol reacts with - 2 x 0.0750 = 0.150 mol
molarity of given HCl solution is 1.00 mol/L
molarity is defined as the number of moles of solute in 1 L of solution
there are 1.00 mol in 1 L of solution
therefore there are 0.150 mol in - 0.150 mol / 1.00 mol/L = 0.150 L
volume of HCl required is 0.150 L
<span>Answer: 0.00 meters
Solution:
Step 1: Define displacement
DISPLACEMENT = a vector quantity that describes "linear or angular distance in a given direction between a body or point and a reference position."
Step 2: Understand the question
Assumption 1: Assume that when the ant moves 4.25 meters from its origin to its nest, it is moving in a positive direction (on a graph you would draw a line along the x-axis from its origin to +4.25).
Assumption 2: Assume that when the ant "turns around...back to the source of food", it is moving back in the negative direction (towards the origin).
Step 3: Analyze the question
What is the distance between where the ant originally started and where it ended its journey?
The ant started and ended its journey in the same place.
While it traveled a distance of 8.52 meters (2 * 4.26 = 8.52), it's displacement is actually 0.00 meters (4.26 + (-4.26) = 0.00)
Therefore, the answer is 0.00 meters</span>
Centi- (symbol c) is a unit prefix in the metric system denoting a factor of one hundredth.