Answer:
Soil series as established by the National Cooperative Soil Survey of the United States Department of Agriculture (USDA) Natural Resources Conservation Service are a level of classification in the USDA Soil Taxonomy classification system hierarchy. The actual object of classification is the so-called soil individual, or pedon.[1] Soil series consist of pedons that are grouped together because of their similar pedogenesis, soil chemistry, and physical properties. More specifically, each series consists of pedons having soil horizons that are similar in soil color, soil texture, soil structure, soil pH, consistence, mineral and chemical composition, and arrangement in the soil profile.[2] These result in soils which perform similarly for land use purposes.
Explanation:
hope its correct
Answer: B is a gas because its volume is less than the volume of the containers.
Explanation: hope this help bye
Answer: Option (a) is the correct answer.
Explanation:
Ionic salts are defined as the salts which tend to contain ionic bonds as there occurs transfer of electrons between its combining atoms.
So, when an ionic salt melts or it is dissolved in water then it will dissociate into its respective ions and as electricity is the flow of electrons or ions. Hence, this salt is then able to conduct electricity.
As covalent compounds are insoluble in water so, they do no dissociate into ions. Hence, they do not conduct electricity.
Similarly, metallic and network solids do not dissociate into ions either when melted or dissolved in water. Therefore, they also do not conduct electricity.
Thus, we can conclude that when a white crystalline salt conducts electricity when it is melted and when it dissolves in water then this bond is of ionic type.
It provides evidence that each organism is related and similar in each way, leading to the conclusion of a common ancestor.<span />
2, 4, 1
Explanation:
We have the following chemical reaction:
Ag₂O → Ag + O₂
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
So the balanced chemical equation is:
2 Ag₂O → 4 Ag + O₂
Learn more about:
balancing chemical equations
brainly.com/question/14112113
brainly.com/question/14187530
#learnwithBrainly