C6H12O6 (s) + 6O2 (g) + 6CO2 (g) + 6H2O(l)
<u>Question 1</u>
The formula mass of methanol is
g/mol.
Therefore, in 5.0 grams of methanol, there are
moles.
<u />
<u>Question 2</u>
The formula mass of copper(II) carbonate is
g/mol.
This means that in 9.0 grams of copper(II) carbonate, there are
moles.
Using Avogradro's number, there are
molecules.
<u>Question 3</u>
The formula mass of cyclohexane is
g/mol.
So, 3.0 grams of cyclohexane is the same as
moles.
<u>Question 4</u>
The formula mass of benzene is
g/mol.
This means that 4.00 moles of benzene has a mass of
grams.
<u>Question 5</u>
1000 atoms of calcium is the same as
moles.
This is equal to
grams.
There are one antibonding molecular orbitals present in molecular orbital model of c.
The cyclobutadiene has a pi system comprised of four individual atomic p - orbital and thus should have a four pi molecular orbitals. The compound is the prototypical antiaromatic hydrocarbon with 4
- electrons . Its rectangular structure is the result of jahn teller reaction which disorder the molecule and lowers its symmetry , converting the triplet to a singlet ground state. It is a small annulene . The delocalisation energy of the
electrons of the cyclobutene is predicted to be zero .
To learn more about antibonding molecular orbitals click here
brainly.com/question/14970060
#SPJ4
To find the answer you can set up an equation like this: 3(x)(d)
x would stand for number of cans each dog eats, while d stands for the number of days in a week. 3(2)(7)=42 Sam would have to purchase 42 cans of dog food each week.
This question needs details or clarity. It is not currently accepting answers. Want to improve this question