Fractional distillation
Explanation:
The best way to separate the mixtures out is through the process of fractional distillation.
In fractional distillation, liquid - liquid mixtures are separated based on the differences in boiling point of their components. Let us examine the boiling points of the component of the mixtures:
Ethanol 78⁰C
Glycerol 290⁰C
Ethylene glycol 197.6⁰C
Methanol 64.7⁰C
Water 100⁰C
We see that the liquids in the mixture have different boiling points. In this process, the mixture is heated in a distillation column. When the boiling point of any component is reached, it will rise up in the column and can be channeled to a condenser where it is cooled and collected.
The liquid with the least boiling point is first separated with the one with the highest boiling is recovered last:
Order of recovery;
Methanol 64.7⁰C
Ethanol 78⁰C
Water 100⁰C
Ethylene glycol 197.6⁰C
Glycerol 290⁰C
Learn more:
Physical properties brainly.com/question/10972073
#learnwithBrainly
Isobaric transition, first law: <span>H=ΔU+w</span>
for a gas expansion: <span>w=<span>P<span>ext</span></span>∗ΔV</span>
to convert to joules, you need the gas constants.
R = 0.08206 L atm/mol*K, R=8.314 J/mol*K
<span>w=<span>P<span>ext</span></span>∗ΔV∗<span><span>8.314 J/mol∗K</span><span>0.08206 L atm/mol∗K</span></span></span>
<span>ΔU=ΔH−[<span>P<span>ext</span></span>∗ΔV∗<span><span>8.314 J/mol∗K</span><span>0.08206 L atm/mol∗K</span></span>]</span>
<span>ΔU=−75000 J−[(43.0atm)∗(2−5)L∗<span><span>8.314 J</span><span>0.08206 L atm</span></span>]</span>
Then you need to convert to kJ.
by the way U=E, internal energy.
Answer:
The answer to your question is: "react with acids to produce hydrogen gas"
Explanation:
Chemicals properties of matter: are properties that can be measured if there is a chemical change or chemical reaction.
Examples of chemical reactions:
Reactivity
Toxicity
Coordination number
Flammability
Of the properties listed, the only that implies a reaction is "react with acids to produce hydrogen gas"
Since the compound has 1.38 time that of oxygen gas at the same conditions of temperature and pressure, we have the relationship:
MW/MWoxygen = 1.38
MW = 44.16
Since there is water formed during the reaction, the formula of the compound must be:
XaHb
where a and b are the coefficients of each element.
If the compound reactions with oxygen forming water and an oxide of the element X, the combustion reaction must be:
XaHb + ((2a + (b/2))/2) O2 = a (XO2) + (b/2)(H2O)
Using dimensional analysis:
10 (1/44.16) (b/2 / 1) (18) = 16.3
Solving for b:
b = 8
The compound now is XaH8. Most probably, the compound is C3H8 since it has a molecular formula of 44 and it reacts with O2 to form water and CO2.
group 1 elements are metals with<u> low</u> density