Answer: Final temperature = 206∘C
Explanation:
Heat Energy is given as
q= mCΔT
ehere
q= Heat energy = 87.4J
m= mass=1.25g
C=specific heat c= 0.386Jg∘C) ,
ΔT = Change in temperate of which the final temperature= 25.0∘C
q= mCΔT
ΔT = q/mC
ΔT = 87.4/ 1.25 X 0.386=181.14∘C
But,
T final- T initial = ΔT
T final = T initial + ΔT
T final = 25.0∘C +181.14∘C=206.14∘C rounded to 206∘C
Answer:
The answer is in the explanation.
Explanation:
The dissociation of a weak acid consist in the following equilibrium:
HX ⇄ H⁺ + X⁻
Where Ka is defined as:
Ka = [H⁺] [X⁻] / [HX]
A strong acid (HY) dissociates completely in water, thus:
HY → H⁺ + Y⁻
As the strong acid produces H⁺, in the equilibrium, the reaction shifts to the left -The undissociated form-, reducing the production of H⁺, allowing ignore the dissociation of the weak acid when calculating the pH.
As we know that there are avogadro no. of atoms in 9 g of beryllium.
1 mole of beryllium = 6.02 * 10^23 atoms
so 2.5 mole= 6.02*10^23*2.5 i.e = <span>15.055 × 10^23 atoms </span>