The oxidizing agent receives electrons from the reducing agent.
2) The oxidation agent takes electrons from the reducing agent.
The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.
Answer:
B) 0.025 
Explanation:
Solution of the problem is in picture attached,
Answer:
Explanation:
(a) Answer: Intermolecular forces
The reason for this answer is because the substance (paraffin wax) only changed it's state from solid to liquid and didn't undergo a breakage in it's covalent bond within it's carbon chain which would have produced another substance.
(b) Solid substances are generally more dense than there corresponding liquid substances because the more compact particles are (which occurs in solids), the more dense they become. They are thus more dense than liquids because liquids have there particles loosely packed and well spaced making them less dense than there corresponding solids. Hence, the solid paraffin wax was going to become less dense because it's particles moved from being tightly packed (as solids) to being loosely packed (as liquids). Density refers to mass per volume but can also be described as the level of compactness of a substance. Thus, since liquid is not as compact as solid, it can be said to be less dense than solids.