Ionic compounds share electrons :)
Answer:
E = 3 × 10¹⁰ J
Explanation:
Mass, m = 100 kg
We need to find energy made by the loss of 100 kg of mass. The formula between the mass and energy is given by :
E = mc²
Where c is speed of light
Putting all the values, we get :
E = 100 kg × (3×10⁸ m/s)²
= 3 × 10¹⁰ J
So, the required energy is 3 × 10¹⁰ J.
Add up the molar mass of Mercury Oxide, and then divide the molar mass of Oxygen by the molar mass of the compound.
So...
mm of Hg + mm of O= 200.59g + 16g= 217g
16g/217g = .0737... x 100 = 7.37%
Explanation:
The hydrological cycle is the continuous cycling of water between land, open water surfaces and the sea. This cycle begins with evaporation, sunlight evaporates water from the surface of earth, next condensation happens, the water absorbed is now used to form clouds, after these clouds are filled to the maximum, precipitation happens, this can be in the form of rainfall and snow, this cycle finalizes when the precipitation of water runs off the land and back into water sources.
Sources of water pollution:
- <em>During precipitation: </em>Smog can be gathered in the atmosphere, during precipitation this pollution can turn into acid rain.
- <em>During runoff:</em> After acid rain hits the ground this polluted water can run into water sources (lakes, rivers, reservoirs).To some extent rivers are a self-renewing resource, if a small quantity of pollution discharges in it the river can return to a clean, unpolluted condition, unfortunately, if the pollution is too big the renewing won't be possible, another problem is even though rivers get cleaned the pollution moves to the seas. Lakes are even more vulnerable to pollution, the flushing effect in these water bodies is less evident than in rivers.
I hope you find this information useful and interesting! Good luck!
In order to determine the density of an item, we will need to determine its mass and volume. The standard unit for measuring mass in a lab is the gram. Think about liquids- what units do you typically report the volume of a liquid in? What about for a sugar cube, what volume is the most appropriate?
A regular object like a sugar cube can be measured with a ruler so we might report the volume in centimeters cubed (cm3). An irregular object like the plate pictured below can be measured by using a technique called volume by displacement. A liquid (typically water) is placed in a graduated cylinder and the volume of a liquid is measured. Then the irregular object is placed in the liquid and the volume is measured again. The change in volume is the irregular object’s volume. This measurement is often made using a graduated cylinder and recording a volume in Liters or milliliters (mL).
Figure 1. (a) Regular object of metal blocks with the same width, length, and height. (B) An irregular