1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
2 years ago
11

On diesel engines, data from ________ sensors are commonly used to adjust exhaust gas recirculation (EGR) rates.

Engineering
1 answer:
e-lub [12.9K]2 years ago
3 0

Answer:

Air mass sensors is the right answer i think

Explanation:

You might be interested in
At a point on the free surface of a stressed body, the normal stresses are 20 ksi (T) on a vertical plane and 30 ksi (C) on a ho
victus00 [196]

Answer:

The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero

Explanation:

The expression for the maximum shear stress is given:

\tau _{M} =\sqrt{(\frac{\sigma _{x}^{2}-\sigma _{y}^{2}  }{2})^{2}+\tau _{xy}^{2}    }

Where

σx = stress in vertical plane = 20 ksi

σy = stress in horizontal plane = -30 ksi

τM = 32 ksi

Replacing:

32=\sqrt{(\frac{20-(-30)}{2} )^{2} +\tau _{xy}^{2}  }

Solving for τxy:

τxy = ±19.98 ksi

The principal stress is:

\sigma _{x}+\sigma _{y} =\sigma _{p1}+\sigma _{p2}

Where

σp1 = 20 ksi

σp2 = -30 ksi

\sigma _{p1}  +\sigma _{p2}=-10 ksi (equation 1)

\tau _{M} =\frac{\sigma _{p1}-\sigma _{p2}}{2} \\\sigma _{p1}-\sigma _{p2}=2\tau _{M}\\\sigma _{p1}-\sigma _{p2}=32*2=64ksi equation 2

Solving both equations:

σp1 = 27 ksi

σp2 = -37 ksi

The shear stress on the vertical plane is zero

4 0
3 years ago
Explain 3 ways that people in sports use engineering to increase their performance?
LenKa [72]
Designing systems for manufacturing, motion analysis or impact testing;
building and testing prototypes;
analyzing the human body to prevent injury;
developing or designing new light weight materials that will be more comfortable and withstand greater impacts or forces;
7 0
2 years ago
Write a program that prompts the user to enter time in 12-hour notation. The program then outputs the time in 24-hour notation.
Juliette [100K]

Answer:

THE CODE FOR THE PROGRAM IS GIVEN BELOW:

#include <iostream>

#include "ConvertTimeHeader.h"

using namespace std;

int main()

{

convertTime convert;

int hr, mn, sc = 0;

 

cout << "Please input hours in 12 hr notation: ";

cin >> hr;

cout << "Please input minutes: ";

cin >> mn;

cout << "Please input seconds: ";

cin >> sc;

 

convert.invalidHr(hr);

convert.invalidMin(mn);

convert.invalidSec(sc);

convert.printMilTime();

 

system("Pause");

 

return 0;  

 

}

#include <iostream>

#include "ConvertTimeHeader.h"

using namespace std;

int convertTime::invalidHr (int hour)

{

try{

 if (hour < 13 && hour > 0)

  {hour = hour + 12;

  return hour;}

 else{

 

  cin.clear();

  cin.ignore();

  cout << "Invalid input! Please input hour again in correct 12 hour format: ";

  cin >> hour;

  invalidHr(hour);

  throw 10;

 }

   

}

catch (int c) { cout << "Invalid hour input!";}

}

int convertTime::invalidMin (int min)

{

try{

 if (min < 60 && min > 0)

  {return min;}

 else{

 

  cin.clear();

  cin.ignore();

  cout << "Invalid input! Please input minutes again in correct 12 hour format: ";

  cin >> min;

  invalidMin(min);

  throw 20;

  return 0;

 }

   

}

catch (int e) { cout << "Invalid minute input!" << endl;}

}

int convertTime::invalidSec(int sec)

{

try{

 if (sec < 60 && sec > 0)

  {return sec;}

 else{

 

  cin.clear();

  cin.ignore();

  cout << "Invalid input! Please input seconds again in correct 12 hour format: ";

  cin >> sec;

  invalidSec(sec);

  throw 30;

  return 0;

 }

   

}

catch (int t) { cout << "Invalid second input!" << endl;}

}

void convertTime::printMilTime()

{

cout << "Your time converted: " << hour << ":" << min << ":" << sec;

}

Explanation:

4 0
3 years ago
A circular hoop sits in a stream of water, oriented perpendicular to the current. If the area of the hoop is doubled, the flux (
natka813 [3]

Answer:

The flux (volume of water per unit time) through the hoop will also double.

Explanation:

The flux = volume of water per unit time = flow rate of water through the hoop.

The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.

This means that

Flow rate = AV

where A is the area of the hoop

V is the velocity of the water through the hoop

This flow rate = volume of water per unit time = Δv/Δt =Q

From all the above statements, we can say

Q = AV

From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2

3 0
3 years ago
Diffusion of Ammonia in an Aqueous Solution Ammonia (A)-water (B) solution ta 278 K and 4 mm thick is in contact with an organic
Tom [10]

Answer:

Explanation:

The pictures below shows the whole explanation for the problem

4 0
3 years ago
Other questions:
  • What are factor of safety for brittle and ductile material
    5·1 answer
  • An experimentalist claims that, based on his measurements, a heat engine receives 300 Btu of heat from a source of 900 R, conver
    14·1 answer
  • There are 30 students in a class. Choose the statement that best explains why at least two students have last names that begin w
    12·1 answer
  • Global Courier Services will ship your package based on how much it weighs and how far you are sending the package. Packages abo
    14·1 answer
  • Can U lose a rank in Brainly by using too many points?
    6·1 answer
  • Método de Programación lineal utilizado para resolver problemas en teoría de redes?
    15·1 answer
  • A continuously variable transmission:
    13·1 answer
  • Guyss I seriously and urgently need help what are the steps to build a headgear ??​
    5·2 answers
  • A 9 -slug mass hangs by a rope from the ceiling. Using the standard value of gravitational acceleration g = 32.2 fts 2, what is
    12·1 answer
  • It is an important part of the differential maintenance which purpose is to make smoother the differential operation by lubricat
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!