1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
15

Please help me fast, I don’t have time

Engineering
1 answer:
Anna71 [15]3 years ago
5 0

Answer: precision

Explanation: Because accuracy is where you keep on getting it right but precision is where you get closer and closer

You might be interested in
Design for human-fit strategies include:
andreev551 [17]

Answer:

B- extreme fit, close fit, adjustable fit

Explanation:

A human-fit design typically involves the process of manufacturing or producing products (tools) that are easy to use by the end users. Therefore, human-fit designs mainly deals with creating ideas that makes the use of a particular product comfortable and convenient for the end users.

The design for human-fit strategies include; extreme fit, close fit and adjustable fit.

Hence, when the aforementioned strategies are properly integrated into a design process, it helps to ensure the ease of use of products and guarantees comfort for the end users.

5 0
3 years ago
you are planning to buy a new couch for your family room you measure the available space and conclude that the couch should be b
nirvana33 [79]
5-6 feet is 60-72 inches and 8 feet is 96 inches
7 0
3 years ago
Free brainlist because im new and i just want to but you have t friend me first
Amiraneli [1.4K]
Okay sure.









I’ll 1)chords
2)pulse
3)aerophone
4) the answer is C
5)rhythm

Pretty sure those are the answers
4 0
3 years ago
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
3 years ago
A hypothetical metal alloy has a grain diameter of 2.4 × 10−2 mm. After a heat treatment at 575°C for 500 min, the grain diamete
Alex

Answer:

The time required is 10.078 hours or 605 min

Explanation:

The formula to apply here is ;

K=(d²-d²₀ )/t

where t is time in hours

d is grain diameter to be achieved after heating in mm

d₀ is the grain diameter before heating in mm

Given

d=5.5 × 10^-2 mm

d₀=2.4 × 10^-2 mm

t₁= 500 min = 500/60 =25/3 hrs

t₂=?

n=2.2

First find K

K=(d²-d²₀ )/t₁

K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3

K=(0.051²-0.024²) ÷25/2

K=0.000243 mm²/h

Re-arrange equation for K ,to get the equation for d as;

d=√(d₀²+ Kt)  where now t=t₂

d=\sqrt{0.024^2+0.000243*t} \\\\0.055=\sqrt{0.024^2+0.000243t} \\\\0.055^2=0.024^2+0.000243t\\\\0.055^2-0.024^2=0.000243t\\\\0.002449=0.000243t\\\\0.002449/0.000243=t\\\\10.078=t\\\\t=605min

4 0
3 years ago
Other questions:
  • Which of the following is not true about Machine Learning?Machine Learning was inspired by the learning process of human beings.
    11·1 answer
  • The function of a circuit breaker is to _____.
    12·1 answer
  • What's mutual inductance​
    8·1 answer
  • The lift on a spinning circular cylinder in a freestream with a velocity of 30 m/s and at standard sea level conditions is 6 N/m
    7·1 answer
  • How do batteries and other types of power sources make physical computing systems more mobile?
    15·2 answers
  • Briefly explain why small-angle grain boundaries are not as effective in interfering with the slip process as are high-angle gra
    5·1 answer
  • Prompt the user to enter five numbers, being five people's weights. Store the numbers in an array of doubles. Output the array's
    11·2 answers
  • The alternator must be operated with the battery disconnected or with the terminals at the back of the alternator
    15·2 answers
  • A single phase molor is located
    14·1 answer
  • A bridge a mass of 800 kg and is able to support up to 4 560 kg. What is its structural efficiency?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!