That depends. there are 2 possible answers.
H
C - C = C - H gives a different answer on the right than on the left.
One the left side, the second Carbon is attached to a double bond and has but one hydrogen attached to it.
The Carbon on the right of the double bond has 2
H
C- C = C - H
H
I'm not sure what you should put. It's one of those things that I would repeat my argument and submit it.
Answer:
1) 2.054 x 10⁻⁴ mol/L.
2) Decreasing the temperature will increase the solubilty of O₂ gas in water.
Explanation:
1) The solubility of O₂ gas in water:
- We cam calculate the solubility of O₂ in water using Henry's law: <em>Cgas = K P</em>,
- where, Cgas is the solubility if gas,
- K is henry's law constant (K for O₂ at 25 ̊C is 1.3 x 10⁻³ mol/l atm),
- P is the partial pressure of O₂ (P = 120 torr / 760 = 0.158 atm).
- Cgas = K P = (1.3 x 10⁻³ mol/l atm) (0.158 atm) = 2.054 x 10⁻⁴ mol/L.
2) The effect of decreasing temperature on the solubility O₂ gas in water:
- Decreasing the temperature will increase the solubilty of O₂ gas in water.
- When the temperature increases, the solubility of O₂ gas in water will decrease because the increase in T will increase the kinetic energy of gas particles and increase its motion that will break intermolecular bonds and escape from solution.
- Decreasing the temperature will increase the solubility of O₂ gas in water will because the kinetic energy of gas particles will decrease and limit its motion that can not break the intermolecular bonds and increase the solubility of O₂ gas.
B. nuclear to thermal to mechanical to electrical
Answer:
Y = 92.5 %
Explanation:
Hello there!
In this case, since the reaction between lead (II) nitrate and potassium bromide is:
Exhibits a 1:2 mole ratio of the former to the later, we can calculate the moles of lead (II) bromide product to figure out the limiting reactant:
Thus, the limiting reactant is the KBr as it yields the fewest moles of PbBr2 product. Afterwards, we calculate the mass of product by using its molar mass:
And the resulting percent yield:
Regards!