Answer:
a.
b.
c.
d. The angular acceleration when sitting in the middle is larger.
Explanation:
a. The magnitude of the torque is given by
, being r the radius, F the force aplied and
the angle between the vector force and the vector radius. Since
and so
.
b. Since the relation
hols, being I the moment of inertia, the angular acceleration can be calculated by
. Since we have already calculated the torque, all left is calculate the moment of inertia. The moment of inertia of a solid disk rotating about an axis that passes through its center is
, being M the mass of the disk. If we assume that a person has a punctual mass, the moment of inertia of a person would be given by
, being
the mass of the person and
the distance from the person to the center. Given all of this, we have
.
c. Similar equation to b, but changing
, so
.
d. The angular acceleration when sitting in the middle is larger because the moment of inertia of the person is smaller, meaning that the person has less inertia to rotate.
Explanation:
Recall the equation for time is distance divided by speed. Here you can use that to solve for "t".
4.6 j more. To get this take 7 and multiply it by 3.5 to get 24.5 take the x which is what you’re looking for and multiply it by the 2.1 to get 2.1x. Take 24.5 and divide it by 2.1 x and get 11.6. Subtract 11.6 by 7 and get 4.6
Gain in decibels is given by;
Gain db = 10*log (Po/Pi), where Po = Power output, Pin = Power input
Substituting;
Gain in db = 10 * log (50/5) = 10 db