1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liono4ka [1.6K]
2 years ago
13

. Write the following in the scientific notation of 0.0000002400m ​

Physics
1 answer:
aleksandr82 [10.1K]2 years ago
7 0

Explanation:

<h2><u>Steps </u><u>:</u></h2>
  1. <u>Move </u><u>decimal</u><u> </u><u>from</u><u> </u><u>left </u><u>to </u><u>right</u><u> </u><u>=</u><u>0</u><u> </u><u>0</u><u>0</u><u>0</u><u>0</u><u>0</u><u>0</u><u>2</u><u>4</u><u>0</u><u>.</u><u>0</u>
  2. <u>Then </u><u>count </u><u>the</u><u> </u><u>numbers</u><u> </u><u>before</u><u> </u><u>decimal </u><u>and </u><u>w</u><u>rite </u><u>it </u><u>like</u><u> </u><u>this </u><u>=</u><u>2</u><u>4</u><u>0</u><u>.</u><u>0</u><u>x</u><u>1</u><u>0</u><u> </u><u>power-</u><u>9</u><u> </u>
  3. <u>That's</u><u> </u><u>all </u>

<u>hope</u><u> it</u><u> </u><u>help</u>

<h2><u>#</u><u>H</u><u>o</u><u>p</u><u>e</u></h2>
You might be interested in
A car travels a distance of 100 km. For the first 30 minutes it is driven at a constant speed of 80 km/hr. The motor begins to v
gregori [183]

Explanation:

First, we need to determine the distance traveled by the car in the first 30 minutes, d_{\frac{1}{2}}.

Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

                                          d_{\frac{1}{2}\text{h}} \ = \ \text{speed} \ \times \ \text{time taken} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ \left(\displaystyle\frac{30}{60} \ \text{h}\right) \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ 0.5 \ \text{h} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 40 \ \text{km}

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance, d_{\text{remain}} , in which the driver reduces the speed to 40km/hr is

                                             d_{\text{remain}} \ = \ 100 \ \text{km} \ - \ 40 \ \text{km} \\ \\ \\ d_{\text{remain}} \ = \ 60 \ \text{km}.

Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by  t_{\text{remian}}.

                                              t_{\text{remain}} \ = \ \displaystyle\frac{\text{distance}}{\text{speed}} \\ \\ \\ t_{\text{remain}} \ = \ \displaystyle\frac{60 \ \text{km}}{40 \ \text{km hr}^{-1}} \\ \\ \\ t_{\text{remain}} \ = \ 1.5 \ \text{hours}.

Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

                                                     \text{speed} \ = \ \displaystyle\frac{\Delta d}{\Delta t} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{(0.5 \ \text{hr} \ + \ 1.5 \ \text{hr})} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{2 \ \text{hr}} \\ \\ \\ \text{speed} \ = \ 50 \ \text{km hr}^{-1}

Therefore, the average speed of the car is 50 km/hr.

8 0
2 years ago
Compare the force of air resistance and the force of gravity on an object falling at its terminal velocity.
Sholpan [36]
The viscous force on an object moving through air is proportional to its velocity.
The only forces acting on an object when falling are air resistance and its weight itself. The weight acts vertically downwards whereas air resistance acts vertically upward.
Let F be the viscous force due to air molecules, B be buoyant force due to air and W be the weight of falling object. Initially, the velocity of falling object and hence the viscous force F is zero and the object is accelerated due to force
(W-B). Because of the acceleration the velocity increases and accordingly the viscous force also increases. At a certain instant, the viscous force becomes equal to W-B. The net force then becomes zero and the object falls with constant velocity. This constant velocity is called terminal velocity.
Thus at terminal velocity, air resistance and force of gravity becomes equal.
7 0
3 years ago
• 2. A 70 kg man on a 100 kg boat throws a ball. The boat moves backwards 5 meters in 10 seconds. What is
Kipish [7]

Answer:

0.5 m/sec

Explanation:

v=S÷t

 =5÷10

v=0.5 m/sec

6 0
3 years ago
Match the terms to the correct descriptions.
LenaWriter [7]

1. Energy Conversion

2. Light Energy

3. Mechanical Energy

4. Kinetic Energy

5. Potential Energy

6. Sound Energy

7. Electrical Energy

8. Chemical Energy

9. Thermal Energy

10. Nuclear energy

Hope that helps u!

:)

8 0
3 years ago
A person's _____________ will change if they move from the Earth to the moon.
Diano4ka-milaya [45]

1. A person's weight will change if they move from the Earth to the moon.

In fact, the weight of a person is given by:

W=mg

where m is the mass of the person and g is the gravitational acceleration. The mass of the person, m, is the same on the Earth and on the moon, but the value of g is different on the Moon (about 1/6 of the Earth's value), so the weight also changes.


2. An astronaut is launched into space. The mass of the astronaut did not change. This is measured in Kg.

The mass of an object (or of a person, as in this case) is an intrinsec property of the object, that depends on the amount of matter inside the object: therefore, this quantity does not depend on the location of the object, so it is the same on the Earth, on the Moon and in space.


3. What is the weight of a ring tailed lemur that has a mass of 10 kg? -98 N

The weight of the lemur is given by:

W=mg

where m=10 kg is the lemur's mass and g=-9.8 m/s^2 is the gravitational acceleration. Using these numbers, we find

W=(10 kg)(-9.8 m/s^2)=-98 N

and the negative sign simply means that the direction of the weight is downward.


4. What is the mass of the lemur from the previous question if it was on the International Space Station? 10 kg

As we said in question 1), the mass of an object does not depend on the location, so the mass of the lemur is still 10 kg, as in the previous exercise.


5. A rocket being thrust upward as the force of the fuel being burned pushes downward is an example of which of Newton's laws? Third's Newton Law

Third's Newton Law states that:

"When an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A".

Applied to this case, the two objects are the fuel and the rocket. The fuel is pushed backward by the rocket, so the fuel exerts an equal and opposite force on the rocket, which then moves forward.


6. When a cannon is fired, the projectile moves forward. According to Newton's 3rd law, the cannon will want to travel backward.

Third's Newton Law states that:

"When an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A".

Applied to this case, the two objects are the cannon and the projectile.The projectile is pushed forward by the cannon, so the projectile exerts an equal and opposite force on the cannon, which moves backward.


7. An object has a weight of 21,532 N on Earth. What is the mass of the object? 2,197 kg

The weight of the object is given by: W=mg

If we re-arrange the formula and we use W=21,532 N, we can find the mass of the object:

m=\frac{W}{g}=\frac{21,532 N}{9.8 m/s^2}=2,197 kg


8. What is the mass of the object from the previous question if we put it on the moon? The force of gravity on the moon is 1.62 m/s2.  2,197 kg

As we said in question 4), the mass of an object does not change if we move it to another location, so its mass is still 2,197 kg.


9. How much force is exerted if a 250 kg object has an acceleration of 750 m/s2 ? 187,500 N

The force exerted on the object is given by Newton's second law:

F=ma

where F is the force, m=250 kg is the mass and a=750 m/s^2 is the acceleration. By using these numbers, we find

F=(250 kg)(750 m/s^2)=187,500 N


10. A resting soccer ball moving after it is kicked is an example of which of Newton's laws? Newton's second law

Newton's second law states that when an object is acted upon unbalanced force, the object has an acceleration, given by the law

F=ma

So, in this case, the ball is kicked and so an unbalanced force is applied to it, and for this reason the ball has an acceleration (in fact, it starts from rest, but then its velocity increases since it starts moving).

5 0
3 years ago
Other questions:
  • Honey bees beat their wings, making a buzzing sound at a frequency of 2.3 × 102 hertz. What is the period of a bee's wing beat?
    7·1 answer
  • Which type of machine is a hand drill ? mechanical machine,compound machine, simple machine , or complex machine ?
    14·2 answers
  • Two microwave signals of nearly equal wavelengths can generate a beat frequency if both are directed onto the same microwave det
    9·2 answers
  • What is a direct result of having greenhouse gases in the atmosphere?
    8·1 answer
  • What would be the weight of a 59.1-kg astronaut on a planet with the same density as Earth and having twice Earth's radius?
    14·1 answer
  • The burners on this electric stove provide _________ to the flow of electric current and electricity is then converted into ____
    5·2 answers
  • Which is true of a mechanical wave?
    12·2 answers
  • A toy rotates at a constant 5rev/min. is its angular acceleration positive, negative, or zero?
    11·1 answer
  • True or False: GLOBAL WINDS
    13·2 answers
  • an object is moving east with a constant speed of 20m/s for 4 seconds.What is the object's acceleration
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!