<span> Given the relationship between </span>wavelength<span> and </span>frequency<span> — the </span>higher<span>the </span>frequency<span>, the shorter the </span>wavelength<span> — it follows that short wavelengths are</span>more<span> energetic than long wavelengths.</span>
Answer: c. they will hit the ground at the same time
Explanation:
The volume of both objects is almost the same, so the force of friction will be the same in each one, so we can discard it.
Now, when yo drop an object, the acceleration of the object is always g = 9.8m/s^2 downwards, independent of the mass of the object.
So if you drop two objects with the same volume but different mass, because the acceleration is the same for both of them, they will hit the ground at the same time, this means that the density of the object has no impact in how much time the object needs to reach the floor.
So the correct option is c
Answer:Reducing mass i.e. water
Explanation:
Frequency For given mass in glass is given by
where k =stiffness of the glass
m=mass of water in glass
from the above expression we can see that if mass is inversely Proportional to frequency
thus reducing mass we can increase frequency
Answer:
0.243 m/s
Explanation:
From law of conservation of motion,
mu+m'u' = V(m+m')................. Equation 1
Where m = mass of the first car, m' = mass of the second car, initial velocity of the first car, u' = initial velocity of the second car, V = Final velocity of both cars.
make V the subject of the equation
V = (mu+m'u')/(m+m')................. Equation 2
Given: m = 260000 kg, u = 0.32 m/s, m' = 52500 kg, u' = -0.14 m/s
Substitute into equation 2
V = (260000×0.32+52500×(-0.14))/(260000+52500)
V = (83200-7350)/312500
V = 75850/312500
V = 0.243 m/s