Answer:
2.4 m
Explanation:
Consider the motion along the vertical direction
= initial position of ball above the ground = 4.5 m
= time taken by the ball to hit the smokestack = 0.65 s
= initial velocity of the ball along vertical direction
= acceleration due to gravity = - 9.8 m/s²
= position of ball at the time of hitting the smokestack
Using the kinematics equation

inserting the above values

Answer:
1. Revolve around a point
2. Formed from dust and gas particles
3. Exoplanets and associated star orbit a common center of mass
4. Composed of gases found in Jupiter and Saturn
Answer:
Minimum work = 5060 J
Explanation:
Given:
Mass of the bucket (m) = 20.0 kg
Initial speed of the bucket (u) = 0 m/s
Final speed of the bucket (v) = 4.0 m/s
Displacement of the bucket (h) = 25.0 m
Let 'W' be the work done by the worker in lifting the bucket.
So, we know from work-energy theorem that, work done by a force is equal to the change in the mechanical energy of the system.
Change in mechanical energy is equal to the sum of change in potential energy and kinetic energy. Therefore,

Therefore, the work done by the worker in lifting the bucket is given as:

Now, plug in the values given and solve for 'W'. This gives,

Therefore, the minimum work that the worker did in lifting the bucket is 5060 J.
The meter is the S.I.unit for length.
One point will be X1,Y1 and the other will be X2,Y2. It does not matter which is which except that X1 and Y1 have to be the same point and X2 and Y2 have to be the same point. For example, let's say you were given (2,3) and (6,8). No matter which point is X1,Y1 and the other is X2,Y2, the slope will still be 5/4.
The rise is the change in y from one point to the other. The run would be the change in x from one point to the other.