Answer:
The net power needed to change the speed of the vehicle is 275,000 W
Explanation:
Given;
mass of the sport vehicle, m = 1600 kg
initial velocity of the vehicle, u = 15 m/s
final velocity of the vehicle, v = 40 m/s
time of motion, t = 4 s
The force needed to change the speed of the sport vehicle;

The net power needed to change the speed of the vehicle is calculated as;
![P_{net} = \frac{1}{2} F[u + v]\\\\P_{net} = \frac{1}{2} \times 10,000[15 + 40]\\\\P_{net} = 275,000 \ W](https://tex.z-dn.net/?f=P_%7Bnet%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20F%5Bu%20%2B%20v%5D%5C%5C%5C%5CP_%7Bnet%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2010%2C000%5B15%20%2B%2040%5D%5C%5C%5C%5CP_%7Bnet%7D%20%3D%20275%2C000%20%5C%20W)
Answer:
= 0.5 m/s²
Explanation:
- According to Newton's second law of motion, the resultant force is directly proportion to the rate of change of linear momentum.
Therefore;<em> F = ma , where F is the Force, m is the mass and a is the acceleration.</em>
<em>Thus; a = F/m</em>
<em>but; F = 5 N, and m = 10 kg</em>
<em> a = 5 /10</em>
<u>= 0.5 m/s²</u>
Answer:
you can predict where the juggling ball is going to land and the move you hand to catch it
Explanation:
Well,
The outer core of the Earth is mostly composed of iron and nickel.
The correct option is C.
Answer:
Explanation:
Time dilation formula is
T = T₀ / √ 1-v²/c²
T₀ is time elapsed in moving reference , T time elapsed in stationary reference.
Here T₀ = 1 second
T = 1/√ 1-0.9² = 1/.4358 = 2.3 second
So 2.3 second will pass for each second on moving reference.