<span>If Paul and Ivan has a speed of 5 meters/second in which their combined mass is 50 kg. To increase the bike's kinetic energy, Paul must increase its speed as well. Increasing his speed allows an increase in momentum of them running the bike. The kinetic energy equation is KE = 0.5mv</span>² where m is mass, v is speed and KE is kinetic energy.
Answer:9.75 m/s
Explanation:
Given
Length of ladder 
Foot the ladder is moving away with speed of 
From diagram
------1
at 


Now differentiating equation 1 w.r.t time




negative indicates distance is decreasing with time
Answer:
<u>Amplitude - remains the same</u>
<u>Frequency - increases</u>
<u>Period - decreases</u>
<u>Velocity - remains the same.</u>
<u />
Explanation:
The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.
The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.
The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.
The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.
<span>Let's convert the speed to m/s:
speed = (55 mph) (1609.3 m / mile) (1 hour / 3600 seconds)
speed = 24.59 m/s
Let's convert the mass to kilograms:
mass = (2135 lb) (0.45359 kg / lb)
mass = 968.4 kg
We can find the kinetic energy KE:
KE = (1/2) m v^2
KE = (1/2) (968.4 kg) (24.59 m/s)^2
KE = 292780 joules
The kinetic energy of the automobile is 292780 joules.</span>
You use the equation Velocity = Acceleration X Time. 4x4=16m/s.
The car travels 18m in 3 seconds.