Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:

ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:

r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:

Finally, you obtain for E:

hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C
it would be C laminated soda lime glass
Answer:
the power that can be generated by the river is 117.6 MW
Explanation:
Given that;
Volume flow rate of river v = 240 m³/s
Height above the lake surface a h = 50 m
Amount of power can be generated from this river water after the dam is filled = ?
Now the collected water in the dam contains potential energy which is used for the power generation,
hence, total mechanical energy is due to potential energy alone.
= m(gh)
first we determine the mass flow rate of the fluid m
m = p×v
where p is density ( 1000 kg/m³
so we substitute
m = 1000kg/m³ × 240 m³/s
m = 240000 kg/s
so we plug in our values into (
= m(gh) kJ/kg )
= 240000 × 9.8 × 50
= 117600000 W
= 117.6 MW
Therefore, the power that can be generated by the river is 117.6 MW
Answer:
a)0.22 m/s².
Explanation:
Given that
Net force ,F= 6.8 N
mass ,m = 31 kg
From the second law of Newton's
F = m a ---------------1
Where
F=Net force ,m=mass
a=Acceleration
Now by putting the values in the equation 1
F = m a
6.8 = 31 x a



Therefore the acceleration of the scooter will be 0.22 m/s².
The answer will be "a".
a)0.22 m/s².
Answer:

Explanation:
let the ladder is of mass "m" and standing at an angle with the ground
So here by horizontal force balance we will have

by vertical force balance we have

now by torque balance about contact point on ground we will have

so we will have

now from first equation we have

