The bowling ball would need less because it has more of a Gravitational pull to the ground than the tennis ball does. The letters represent force = mass and acceleration. I hope this helps ✨✨
Answer:
a) 39.6 m/s b) 4123 N
Explanation:
a) At the top of the loop, all of the forces point downwards (force of gravity and normal force).
Fnet=ma
ma=m(v^2/R) (centripetal acceleration)
mg=m(v^2/R)
m cancels out (this is why pilot feels weightless) so,
g=(v^2/R)
9.8 m/s^2 = v^2/160 m
v^2=1568 m^2/s^2
v=39.6 m/s
b) At the bottom of the loop, the normal force and the force of gravity point in opposite directions. The normal force is the weight felt.
Convert 300 km/hr to m/s
300 km/hr=83.3 m/s
Convert pilot's weight into mass:
760 N = 77.55 kg
Fnet=ma
n-mg=m(v^2/R)
n=(77.55 kg)(((83.3 m/s)^2)/160 m)+(77.55 kg)(9.8 m/s^2)
n=3363.2 N+760 N=4123 N
Answer:
41.2°
Explanation:
Total internal reflection is the reflection of the incident ray at the interface between two media in which one of the media has a lower refractive index than the other. It occurs when the angle of incidence in the denser medium exceeds the critical angle.
The critical angle is the angle of incidence in the denser medium when the angle of incidence in the less dense medium is 90°.
Since
n= 1/sin C
C= sin^-(1/n)
C= sin^-(1/1.33)
C= 48.8°
Hence angle of incidence= 90-48.8 = 41.2°
Change minutes to hrs, divide by 60:
30 min = .50 hrs
45 min = .75 hrs
12 min = .20 hrs
----------------
total + 1.45 hrs, total travel time
:
let a = average speed for the trip
:
Write a dist equation, dist = speed * time
:
80(.5) + 100(.20) + 40(.75) = 1.45a
40 + 20 + 30 = 1.45a
90 = 1.45a
a =
a = 62.069 km/h, for the entire trip
and
90 km is the total distance
Inertia is a force which keeps stationary objects at rest and moving objects in motion at ... False - Pounds is a unit of force commonly used in the British system of ... When a chemistry student places a beaker on a balance and determines it to be ... In this case, an object moving to the right could have a balance of forces if it is ...