Answer:
Option C. 5,000 kg m/s
Explanation:
<u>Linear Momentum on a System of Particles
</u>
Is defined as the sum of the momenta of each particles in a determined moment. The individual momentum is the product of the mass of the particle by its speed
P=mv
The question refers to an 100 kg object traveling at 50 m/s who collides with another object of 50 kg object initially at rest. We compute the moments of each object


The sum of the momenta of both objects prior to the collision is


Current= voltage divided by resistance
120/30=4
Answer: 166.67km/hr
Explanation:
Given the following :
Distance traveled = 250km
Time taken = 1.5 hours
Recall :
Speed = Distance traveled / time taken
Speed = 250 km / 1.5 hours
Speed = 166. 67 km/hr
Speed in m/s:
166.67km/hr = (166.67 × 1000)m / 3600 s
= 166670m / 3600s
= 46.3m/s
Inertia depends on mass, the more mass the more inertia.
Answer:
73.72
Explanation:
For this subtraction problem, the answer or solution is expressed to the least precise of the numbers we are trying to subtract.
The least precise number is the number with the lowest significant numbers:
105.4 - 31.681
105.4 has 4 significant numbers
31.681 has 5 significant numbers
So;
105.4
- 31.681
------------------
73.719
----------------
The solution is therefore 73.72