Explanation:
Pressure and depth have a directly proportional relationship. This is due to the greater column of water that pushes down on an object submersed.. so the deeper the liquid level the higher the pressure of the liquid.
Answer:
10.08 L.
Explanation:
- If we assume that CO₂ gas behaves ideally at STP (standard T(0.0 °C) and P(1.0 atm)):
<em>It is known that 1.0 mole of ideal gas occupies 22.4 L at STP conditions.</em>
<em></em>
<u><em>Using cross multiplication:</em></u>
1.0 mole of CO₂ gas occupies → 22.4 L.
0.45 mole of CO₂ gas occupies → ??? L.
<em>∴ The volume occupied by 0.45 mole of CO₂ gas </em>= (0.45 mol)(22.4 L)/(1.0 mol) = <em>10.08 L.</em>
Answer:
18.94%.
Explanation:
- The decay of carbon-14 is a first order reaction.
- The rate constant of the reaction (k) in a first order reaction = ln (2)/half-life = 0.693/(5730 year) = 1.21 x 10⁻⁴ year⁻¹.
- The integration law of a first order reaction is:
<em>kt = ln [A₀]/[A]</em>
k is the rate constant = 1.21 x 10⁻⁴ year⁻¹.
t is the time = 13,750 years.
[A₀] is the initial percentage of carbon-14 = 100.0 %.
[A] is the remaining percentage of carbon-14 = ??? %.
∵ kt = ln [Ao]/[A]
∴ (1.21 x 10⁻⁴ year⁻¹)(13,750 years) = ln (100.0%)/[A]
1.664 = ln (100.0%)/[A]
Taking exponential for both sides:
5.279 = (100.0%)/[A]
<em>∴ [A]</em> = (100.0%)/5.279 = <em>18.94%.</em>
What you were given is the balanced chemical equation